- 这是对第三弹应用的再次升级
- 实现了对距离的估算和速度的估算,注意了是估算
- 理论上是距离是可以准确测量的(误差5%),速度也是可以大致估算出来
- 但是前提是要满足一些前提条件,比如卡口摄像单元的内参,外参,识别模型的识别框稳定性等
- 首先先贴出效果图,可以明显看到车辆和高速高架拍摄点之间距离和车辆的速度估算值
- 注意由于未知卡口摄像单元的内外参,以及高度,所以图示结果与实际是有出入的
- 距离的测算实际是三个坐标系的互换
- 图像坐标系与相机坐标系
- 相机坐标系与世界坐标系
- 具体可参照下图,引用于网络
- 通过矩阵相乘两个坐标系转换矩阵 ,从而将图像坐标系转换到世界坐标系,进而得到距离distance
- 而测量速度,有很多种方式,原理都是距离/时差 等于速度,不同点在于怎么测量距离变化
- 可以用稠密光流法,cv就有对应的库,但本单元使用的是差帧算法,光流法其实也可以算差帧算法
- 本章是用不同帧段测量到的distance做一个平均滤波再来 求速度 ,效果如上gif,可见还是有些波动的,后期可做改进
- 当然各位老师有更好更稳定的方法也还望能在下方评论区 多多交流,感谢
- 根据道路交通智能摄像机通用技术要求- T/CITSA 02-2020
- 识别类要求 现有现成模型都能实现
- 再结合深城交发布的宣传视频,这五弹基本能实现对标功能
- 当然在模型精度上,并没有做单独训练,所以识别精度有很大提升空间