第五弹-yolov5模型 距离估算,速度估算

  • 这是对第三弹应用的再次升级
  • 实现了对距离的估算和速度的估算,注意了是估算
  • 理论上是距离是可以准确测量的(误差5%),速度也是可以大致估算出来
  • 但是前提是要满足一些前提条件,比如卡口摄像单元的内参,外参,识别模型的识别框稳定性等

  • 首先先贴出效果图,可以明显看到车辆和高速高架拍摄点之间距离和车辆的速度估算值
  • 注意由于未知卡口摄像单元的内外参,以及高度,所以图示结果与实际是有出入的

20240720_033950.gif

  • 距离的测算实际是三个坐标系的互换
    • 图像坐标系与相机坐标系
    • 相机坐标系与世界坐标系
    • 具体可参照下图,引用于网络

cke_68881.png

  • 通过矩阵相乘两个坐标系转换矩阵 ,从而将图像坐标系转换到世界坐标系,进而得到距离distance
  • 而测量速度,有很多种方式,原理都是距离/时差 等于速度,不同点在于怎么测量距离变化
  • 可以用稠密光流法,cv就有对应的库,但本单元使用的是差帧算法,光流法其实也可以算差帧算法
  • 本章是用不同帧段测量到的distance做一个平均滤波再来 求速度 ,效果如上gif,可见还是有些波动的,后期可做改进
  • 当然各位老师有更好更稳定的方法也还望能在下方评论区 多多交流,感谢

  • 根据道路交通智能摄像机通用技术要求- T/CITSA 02-2020
    • 识别类要求 现有现成模型都能实现
    • 再结合深城交发布的宣传视频,这五弹基本能实现对标功能
  • 当然在模型精度上,并没有做单独训练,所以识别精度有很大提升空间

cke_245732.png

### 使用YOLO算法计算检测目标速度的方法 #### 方法概述 为了利用YOLO算法来估计移动对象的速度,通常需要结合连续帧之间的位置变化来进行分析。具体来说,在视频序列中应用YOLO模型对每一帧执行目标检测操作,记录下各个时刻被标记物体的位置坐标以及时间戳信息。 #### 实现过程 ##### 数据获取与预处理 首先读取一段含有运动车辆的视频文件,并将其分解成一系列静态图片即帧图像用于后续处理: ```matlab videoFileReader = VideoReader('traffic.mp4'); frames = []; while hasFrame(videoFileReader) frame = readFrame(videoFileReader); frames{end+1} = frame; end ``` ##### 应用YOLO进行多帧检测 接着调用训练好的YOLO网络逐一对这些帧实施预测工作,提取出感兴趣区域(ROI)内的边界框参数[x, y, w, h]表示矩形左上角顶点横纵坐标加上宽度高度值;同时保存对应的时间标签t_n秒数作为参考依据以便稍后求解瞬时速率v=Δd/Δt: ```matlab % 假设已经加载了一个名为net的YOLO v3网络结构实例 bboxes = cell(1,length(frames)); scores = zeros(length(frames), 1); for i = 1:length(frames) [bbox,score] = detect(net, frames{i}); bboxes{i} = bbox; % 存储每张图上的所有边框 scores(i) = score'; % 各类别的置信度得分 drawnow limitrate; % 更新显示进度条 end ``` ##### 计算位移向量及平均速度 最后选取相邻两帧间同一ID编号下的中心点P(x,y),按照欧几里得距离公式\[ d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\][^1] 来衡量它们之间沿直线方向上的相对偏移程度大小,再除以两者间隔的实际持续周期T得出单位时间内行驶路程长度S/T也就是常说的线性前进速率V。 注意这里假设摄像头固定不动且拍摄视角稳定不变的情况下才能获得较为精确的结果测量值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

william_myq

你的鼓励是我继续的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值