两篇论文都是一两周前阅读的,作个笔记供以后参考。
EDSR
EDSR是一个加强的用于SR的深度残差网络,主要是在SRResnet的基础上进行改造的。
1.Introduction
首先介绍了deepnet的局限性。
- 模型的重构性能对较小的体系结构变化很敏感,相同模型基于不同的初始化和训练技巧可以得到不同等级的性能表现。
- 大多数现行的SR算法将不同的scale视为独立的问题,并没有利用SR间不同scale的关联,所以每一种scale都需要单独训练。(我看的好多文章明明都支持多种缩放因子啊。感觉都是硬找创新点)
VDSR模型是可以同时解决不同scale问题的,这说明尺度特定的模型的训练是有冗余的,但是VDSR的LR是需要通过bicubic成HR尺寸的,没有直接在LR空间进行计算,损失了LR空间的图像细节并增大了计算复杂度。
为了解决这个问题呢,作者主要采用了以下两点:
- 移除了不必要的模型,主要就是移除了BN
- 设计了带有一个单一主分支的基准(多尺度 —— multi-scale)模块 ,含有 B = 16 的残差模块,所以大部分参数都可以在不同尺度间进行共享,
2.Related work
提出MSE或者L2 loss可能并不能保证在PSNR和SSIM上有更好的性能,所以这里采用了L1 Loss函数。
3.Proposed Methods
3.1 EDSR
提出了一个增强版的结构简单的残差网络模型