关于tf2 object detection api 的ssdmobilenetv2中超参数的一些参数问题

学习率函数

常数学习率:
learning_rate {
constant_learning_rate {
learning_rate: 0.001
}
}
这将使用恒定的学习率 0.001,适用于简单任务或者已经找到学习率的最佳值的情况。

多步长衰减学习率:
learning_rate {
piecewise_constant_learning_rate {
boundaries: [100000, 150000]
values: [0.004, 0.0004, 0.00004]
}
}
这个学习率函数在训练过程中会在特定的训练步数(boundaries)进行学习率的衰减,按照对应的值(values)进行设置。示例中学习率会在步数为100,000时变为0.004,步数为150,000时变为0.0004,步数超过250,000时则变为0.00004。

指数衰减学习率:
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 10000
decay_factor: 0.96
}
}

余弦退火函数
cosine_decay_learning_rate {
learning_rate_base: 0.004
total_steps: 300000
warmup_learning_rate: 0.001
warmup_steps: 10000
}
这会从0.001经过1w steps后变成0.004,然后在剩余步数降为0

锚框相关

anchor_scale

anchor_scale参数用于确定锚框(anchor box)的基准大小。锚框是在不同位置和尺度上生成的参考框,用于检测目标物体。通过调整anchor_scale的值,可以改变生成的锚框的大小。通常表示锚框得缩放比例。

通常情况下,anchor_scale的值设置为一个列表,表示在每个特征图上使用的不同尺度的基准大小。例如,如果设置anchor_scale为[0.5, 1.0, 2.0],则表示在每个特征图上生成三种不同尺度的锚框,以适应不同大小的目标物体。

较小的anchor_scale值会生成较小的锚框,适合检测小尺寸的目标物体,而较大的anchor_scale值会生成较大的锚框,适合检测大尺寸的目标物体。根据任务需求和数据集中目标物体的大小,可以调整anchor_scale的值来适应不同尺寸范围的目标物体。

aspect_ratios

aspect_ratios参数确定了在每个基准大小下生成的锚框的长宽比。

具体来说,您设置了以下的aspect_ratios值:

1.0:表示将生成的锚框视为正方形,长宽比为1:1。
2.0:表示生成的锚框的宽度是高度的两倍,长宽比为2:1。
1.5:表示生成的锚框的宽度是高度的1.5倍,长宽比为3:2。
通过设置不同的aspect_ratios,可以生成具有不同长宽比的锚框,以适应不同形状的目标物体。通常情况下在你完成数据集后要通过聚类来找到适合自己得值。这个值会影响识别物体得框,如果说你要识别得物体得长宽比为在此列,那么在最终检测时候得到得检测框会不符合这个物体。

scales_per_octave

scales_per_octave参数用于确定在每个八度范围内生成的尺度数量。在目标检测或物体识别任务中,使用不同尺度的特征图可以更好地适应不同大小的目标物体。

通常情况下,scales_per_octave的值是一个正整数,表示每个八度内生成的尺度数量。根据具体的模型架构和任务需求,您可以设置不同的值。较大的scales_per_octave值会生成更多的尺度,适用于检测多尺度目标物体。而较小的scales_per_octave值则会生成更少的尺度,适用于检测相对一致尺寸的目标物体。

Faster R-CNN 目标框编码器

在目标检测任务中,目标框编码器用于将真实框(ground truth boxes)与预测框(predicted boxes)之间进行编码和解码,以便进行损失计算和模型训练。

y_scale: 12.0 和 x_scale: 12.0这些参数表示在编码和解码过程中对垂直方向和水平方向的坐标进行缩放。具体而言,实际坐标值将乘以 12.0 进行编码,以及解码时将预测的偏移值除以 12.0。
height_scale: 6.0 和 width_scale: 6.0:这些参数表示在编码和解码过程中对目标框的高度和宽度进行缩放。类似地,实际的高度和宽度值将乘以 6.0 进行编码,以及解码时将预测的偏移值除以 6.0。
通过设置这些缩放参数,可以在编码和解码过程中将实际的坐标和尺寸转换为相对较小的值,从而帮助优化目标检测模型的训练效果。这些缩放参数可以根据任务需求和数据集特点进行调整。较大的缩放值可以帮助处理较大的目标框,而较小的缩放值则适用于较小的目标框。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值