输入三个自然数N,i,j(l≤i≤N,1≤j≤N),输出在一个N×N格的棋盘中,与格子(i,j)同行、同列、同一对角线的所有格子的位置。例如,n=4,i=2,j=3表示棋盘中的第二行第三列的格子,如:n=4,i=2,j=3表示了棋盘中的第二行第三列的格子,如下图:
当n=4,i=2,j=3时,输出的结果是:
(2,1) (2,2) (2,3) (2,4) {同一行上格子的位置}
(1,3) (2,3) (3,3) (4,3) {同列列上格子的位置}
(1,2) (2,3) (3,4) {左上到右下对角线上的格子的位置}
(4,1) (3,2) (2,3) (1,4) {左下到右上对角线上的格子的位置}
输入
只有1行,共3个数,分别为N(1≤N≤10000),i,j的值。
输出
按照题目描述的格式输出。
样例输入 Copy
4 2 3
样例输出 Copy
(2,1)(2,2)(2,3)(2,4) (1,3)(2,3)(3,3)(4,3) (1,2)(2,3)(3,4) (4,1)(3,2)(2,3)(1,4)
思路:
1,每一行都是一种for循环规律
2.对角线直接用for循环,不易得出----->>>>>找规律:对角线上的坐标特点,用if判断是否满足条件
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,i,j;
scanf("%d%d%d",&n,&i,&j);
for(int k=1;k<=n;k++)
{
printf("(%d,%d)",i,k);
}
printf("\n");
for(int k=1;k<=n;k++)
{
printf("(%d,%d)",k,j);
}
printf("\n");
for(int m=1;m<=n;m++)
{
for(int p=1;p<=n;p++)
{
if((p-m)==(j-i)) //对角线的规律
printf("(%d,%d)",m,p);
}
}
printf("\n");
for(int m=n;m>=1;m--)
{
for(int p=1;p<=n;p++)
{
if((p+m)==(j+i))
printf("(%d,%d)",m,p);
}
}
printf("\n");
return 0;
}