为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯,一共有n张地毯,编号从 1 到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入
输入共 n+2行。
第一行有一个整数n,表示总共有 n张地毯。
接下来的 n行中,第 i+1行表示编号 i的地毯的信息,包含四个正整数 a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在 x轴和 y轴方向的长度。
第 n+2 行包含两个正整数 x 和 y,表示所求的地面的点的坐标(x,y)。
0≤n≤10,000,0≤a, b, g, k≤100,000
输出
输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
样例输入 Copy
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2
样例输出 Copy
3
思路:
1.首先不要被题目描述吓到,乍一看似乎无从下手,但仔细一想发现逻辑并不难----->>>>求最上面的即求满足条件且编号最大的,可采用结构体来记录编号,并且方便对每个属性进行比较;
2.比较方法:
cp[i].a<=x&&cp[i].b<=y&&(cp[i].a+cp[i].g)>=x&&(cp[i].b+cp[i].k)>=y
满足此条件就代表点(x,y)在第i个地毯上
3.用for循环遍历地毯,并记录地毯编号,再找出最大的编号即可
#include<bits/stdc++.h>
using namespace std;
struct carpet{
int a,b;
int g,k;
int id; //给地毯加个编号属性
}cp[10005];
int main()
{
int n,x,y;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>cp[i].a>>cp[i].b>>cp[i].g>>cp[i].k;
cp[i].id=i; //编号从1开始增加
}
cin>>x>>y;
int res,mx=0;
for(int i=1;i<=n;i++)
{
if(cp[i].a<=x&&cp[i].b<=y&&(cp[i].a+cp[i].g)>=x&&(cp[i].b+cp[i].k)>=y)
res=max(cp[i].id,mx); 要求最上面的地毯编号即求满足条件的最大的编号
}
cout<<res<<endl;
return 0;
}