随机图

随机图的概念
D是在平面上的一个有界凸域,N个点 被随机的布置在D上,点的位置由其坐标 表示,各个点的坐标为独立同分布的随机向量,其概率密度函数为 ,满足归一化条件 。若两个点之间的距离 (推荐使用欧式度量),则在点和之间连接上一条边,否则节点之间不存在边。这样,由节点及其之间连接的边就构成了凸域内的一个随机图。基于这种随机图讨论如下问题。
问题:
1. 节点度的统计特性研究
与某节点相连的边的个数称为该节点的度(degree) ,请研究在随机图中节点度的统计特性,可研究的问题包括如下几个方面:
1.1 N个节点度数的联合概率分布。
1.2 在给定节点位置坐标 的条件下,求节点度数的条件概率分布(以k为参数),并在此基础上讨论随机图上节点度数的统计特征随位置的变化规律。
1.3 计算度数为 的节点个数的概率分布(以 为参数),即求 , ,其中 为示性函数。
1.4 求节点度数k的概率分布,即求 ,;
1.5 在因特网的建模中,人们发现它的随机图模型中节点度的统计特性具有“幂律”(Power Law)特征,即网络中节点的度为k的概率 服从幂律分布,即满足 。其中,c为归一化常数,m为网络中顶点的最小度数,γ为幂指数。设计概率密度函数以及边的生成准则,使上述随机图中具有“幂律”特征。
4. 基于随机图的随机过程研究 在前面三个问题中已经研究了许多基于随机图的随机变量。显然,这些随机变量的统计特征是和总节点数N及凸域的总面积D相关的。下面试将N或凸域的总面积D作为指标集构造基于随机图的随机过程,需要特别注意的是随机过程对样本空间的要求。希望你所构造的随机过程具有一些基本性质,如平稳性、遍历性、独立增量性、马尔可夫性、鞅性等等。如果你认为根本构造不出具有某种性质的随机过程,你也可以尝试给出证明。


具体分析与讨论:
1. 节点度的统计特性研究
 给定了N个节点 的情况下,设 为这些节点之间边的集合。可以表示为一个 阶的邻接矩阵 ,其中, 。显然, 满足如下性质:E为对称阵,且对角线的元素值一定为0。
当节点间的边的关系确定,即 中所有元素确定时,E就被确定,就唯一的确定了一个图。且这个图中节点 的度
 。 (1-1)
现考虑,各节点之间的边的关系是随机的,那么E中的元素 是随机变量,且
 ,(1-2)
其中 。这样,如果不考虑节点的具体位置,随机矩阵就表征了一个随机图的全部信息。实际上也就是 个随机变量 表征了随机图的信息。例如,随机图中的节点的度可以由式(1-1)得到,在已知的分布的情况下,可以利用随机变量之间的关系可以求得度的分布。
下面将利用上述模型来求解题中的问题。在此之前,还有几个问题还需要说明。
第一,此次题目中的随机图严格来讲节点的位置有关的,由于我们最终考虑的节点的度是图的拓扑性质,故认为这个模型是适用的。
第二,随机图定义中的  在这个模型之中都没有了,这并不表明不需要它们能得到最后的结果。实际上,它们的具体形式决定了模型中的 ,从而反映在最后的结果里。
第三,将定义中的 从定义在凸域D扩展到 上,规定其在D内部等于原来的定义值,在D之外则等于零。这样,在作形式推导时候,可以不考虑D的形状大小等,致使在最后计算特定分布和特定形状的结果时,再来考虑。
第四,假设模型中的随机变量 是独立的。由于两节点间有没有边至于它们本身的欧式距离有关系,且与它们的节点序号没有关系。所以这个假设一定程度上是合理的(后面利用它得到的结论也说明了这点)。此外,假设 比假设 的独立性更为合理,因为不同点的度是要服从一定规律约束的(如欧拉定理)。
首先讨论1.2小问。
由于在已知 在(x,y)条件时,有式(1-3)如下          表示 在以 为中心,半径为d的圆中的概率。一般地,给定具体 , 只是与参数d和(x,y)在凸域D中位置有关,因为在一些(x,y)条件下, 可能取道凸域外。
在d远小于凸域的半径且 在凸域边缘内部不是很大时,这时候凸域形状可以不考虑,因为 在在凸域外部的概率用内部概率来来替代的影响可以忽略。此时, 是一个定值p,只与d和凸域面积有关。所以这种情况下, 在(x,y)条件下均服从参数为p的0~1分布。而 得度 ,又 在条件下仍然独立,所以其和 服从二项分布,参数为(N-1,p),故分布为 。
如果不忽略在边界上的情况,则得到的 ,所以 此时的条件分布为服从参数 的0~1分布,类似得到 ,此时这个条件分布是坐标(x,y)的函数。
下面考虑 的条件均值方差也是(x,y)的函数
 
如果 离D所有边界距离大于d,则 ,小于d时则p’<p,定性来看看,统计特性条件均值在(x,y)从D的内部到外部变化过程中,逐渐变小的,具体变化情况取决于 具体形式和D的形状形式,这些因素可以集中由 。反映。
下面讨论1.4。
以上说明说明随机变量 的条件分布是均服从0~1分布,参数p’。下证 分布
 。(1-4)
利用再由连续形式的贝叶斯全概率公式就得到了(1-4)式。当不考虑边界效应时,条件分布于(x,y)无关,可以提到概率积分号外,里面概率的积分恒等于1,所以不论对于什么分布,结果 。考虑边界时,p’是(x,y)函数,所以对区域积分之后也为与(x,y)无关的数。此时,不同的 的具体形式就会影响到 的值的大小。但无论考虑还是不考虑在边界情况,得到的 是与(x,y)无关的数,影响它的只有d,D的面积和形状。上述推导对任意 都适用用。所以 同分布,且服从参数为  的0~1分布。
又它们独立,由(1-1)式,知 服从参数为(N-1, )的二项分布。即
 (1-5)
当N-1很大时,且 充分小时候, 的分布近似服从参数为 的泊松分布。
 
这个结果也由仿真试验得到了验证。
设计的仿真试验如下,给定D为边长为L的正方形区域,d=aL, 为D内部均匀分布。根据在正方形内产生模拟均匀分布的点,按照定义计算每次试验里节点度
数,才重复10000试验,统计节点数为不同值的频率,即得到仿真值。
理论计算在不考虑边界效应的情况下, ,利用前面的推导,可以得到算得理论曲线与方针结果比较。
根据前面的结论,在D形状和d定下来后,如果考虑边界效应, 也是一个定值,可以计算确定。所以,用这个值代入(1-5)式能得到更准确的理论值。
由于计算 与N值无关,而每次改变L,d的比值重新计算很麻烦,这里采用了一个替换的方法。首先作N=2的这个贝奴利试验,可以得到理论值。由(1-5)式在N=2式可以反求的 的估值。用这个值代替 ,效果在会更接近于理论值(统计意义下)。
用这个方法,在不同L,d,N下作了多次试验,都证实了理论值和仿真结果相吻合。图1是L/d=20,N=500,10000次试验统计频率得到的一次结果。
下面讨论1.3小问。
首先讨论一下 ,将(1-1)代入,计算
 

 。
看出,在N足够大, 足够小的条件下时,两者近似相等,认为 具有统计独立性。
对于指定的 , 一定,可知,示性函数 是一个服从参数为 的0~1分布。N足够大, 足够小的条件下,利用上面的结论,这些示性函数统计独立,所以它们的和 , 是服从参数 二项分布。又条件是N足够大, 足够小的条件下,所以这时二

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值