自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(328)
  • 收藏
  • 关注

原创 系统地探讨一下 RPA系统(机器人流程自动化)——专注于执行那些规则明确、重复性高的软件操作任务

一个“RPA+AI”的发票处理机器人,不仅能抓取数据,还能通过OCR智能识别各种版式的发票,用NLP理解模糊的字段,甚至通过机器学习判断发票类别是否合理,实现端到端的智能处理。它不取代核心业务系统,而是作为一层灵活的“外挂”自动化层,高效连接起各个数据孤岛,快速解决那些痛点明确、ROI高的效率问题。RPA是当今企业数字化转型中的一项热门技术,它扮演着“数字员工”的角色,专注于执行那些规则明确、重复性高的软件操作任务。:本质是“手”和“眼”的自动化,缺乏真正的“大脑”去理解和创造。

2026-01-08 09:53:16 818

原创 解析一下 Intel SGX 这项硬件安全技术

SGX是硬件强制安全的巅峰之作,它提供了一种在极端敌对环境下的数据保护能力。特性SGX传统软件加密TPM/安全芯片保护对象使用中的代码和数据静态/传输中的数据密钥、静态数据威胁模型不信任OS/Hypervisor信任OS,防外部窃听物理防篡改,提供根信任性能较高(硬件加速)依赖软件性能通常较慢,用于关键操作灵活性高,可编程极高低,功能固定结论SGX不是银弹,而是一把为特定高风险场景打造的“安全手术刀”。它最适合那些需要在不可信基础设施上处理高价值敏感数据的场景。随着机密计算。

2026-01-08 09:52:56 507

原创 DDoS攻击之一:说说慢速攻击,其核心不是用流量“冲垮”你,而是用最少的资源“拖死”你

从网络层面看,攻击流量极小(可能只有几十Kbps),且所有请求语法完全合法,传统基于流量阈值或恶意包特征的防护设备完全失效。,导致真正的顾客无法进入,餐厅(服务器)的“接待能力”(并发连接数)被无效占用,最终饿死(拒绝服务)。:一个攻击连接可能只需几B/s的流量,数百个连接的总流量也远低于正常业务流量,无法触发基于带宽的告警。在应用层攻击日益复杂的今天,防御慢速攻击的能力,是衡量一个安全防护体系是否成熟、是否精细的重要标尺。的应用层攻击,其核心不是用流量“冲垮”你,而是用最少的资源“拖死”你。

2026-01-07 09:27:27 546

原创 DoS/DDoS攻击与通信之间的联系

可以将DoS/DDoS攻击与通信的关系,视为一种“寄生虫与宿主”、“伪造与真实”、“破坏与秩序”的对抗。攻击是恶意通信:它使用相同的物理链路、相同的协议栈、相同的端口。它在形式上就是通信。攻击的目的是破坏通信:它的终极目标是让正常的、有意义的通信无法进行。防御是在通信中甄别恶意:防御系统像一个精明的邮局局长,不阻止所有信件,但必须学会识别哪些信封里装的是炭疽粉末(攻击),而哪些是普通信件(正常业务)。理解这种深度联系,是设计健壮网络系统、开发有效安全产品和进行高效安全运维的基础。它告诉我们,

2026-01-07 09:26:38 471

原创 DoS(拒绝服务攻击)与DDoS(分布式拒绝服务攻击)的核心区别在于 “单点攻击”与“协同作战”

特性DoSDDoS全称拒绝服务攻击分布式拒绝服务攻击攻击源单一或少量的攻击源(如一台电脑)。海量、分布式的攻击源(成千上万台被控制的“肉鸡”设备组成的僵尸网络攻击原理利用目标系统、服务或协议的单一漏洞或设计缺陷,发送精心构造的数据包,使其资源耗尽或崩溃。不依赖漏洞,纯粹通过耗尽目标的带宽、连接数或计算资源,使其无法服务正常用户。比喻一个人不停地拨打某家公司的客服热线,占住线路。成千上万人(被操控的)同时拨打该客服热线,彻底堵塞所有线路。复杂度与溯源相对简单,易于追踪和阻断(攻击IP单一)。

2026-01-06 09:24:55 752

原创 CDN(内容分发网络)——缓存和分发网站、应用程序、视频等内容,以提高用户访问速度和稳定性,减少网络延迟和拥塞,同时减轻源服务器的压力

CDN的本质,是通过“空间换时间”和“分散抗集中”的工程智慧,重构了互联网的流量格局。它已成为现代互联网应用的标准配置和关键基础设施。全球可达性:确保任何地区的用户都能获得良好体验。业务弹性:抵御流量高峰和网络攻击。成本优化:节省源站带宽和服务器成本。开发敏捷性:将复杂的网络、缓存、安全问题交给专业平台,让开发者聚焦核心业务。在云原生和万物互联时代,CDN正从“内容分发”走向“应用与安全分发”,其作为边缘智能平台的战略价值将愈发凸显。

2026-01-06 09:24:32 768

原创 DNS服务器映射——核心作用是域名解析,即把用户输入的易记域名(如 www.example.com)转换为计算机可识别的IP地址(如 93.184.216.34),或者反向将IP地址解析为主机名

DNS服务器映射”的本质,是根据业务、架构、安全和运维需求,对DNS的查询路径、解析逻辑和数据流向进行有目的的设计与控制。规划时需要考虑:目的:是要冗余、加速、分流,还是安全过滤?层次:是递归解析器(用户侧)的映射,还是权威服务器(服务侧)的映射?协议与工具:使用BIND(功能强大)、CoreDNS(云原生友好)、还是商业解决方案(集成度高)?策略顺序:当多个映射策略(如视图、安全过滤)同时存在时,明确其处理的优先级至关重要。理解并善用这些映射策略,能让你构建的网络更健壮、更智能、更安全。

2026-01-05 09:43:03 1271

原创 IOA(攻击指标)、IOB(行为指标)、IOC(入侵指标)代表了三种不同维度、不同阶段的威胁观察视角

理解IOC、IOA、IOB的区别,就是理解现代安全防御从“看特征”到“看行为”再到“看影响”的演进之路。它们分别对应了安全运营的战术、战役和战略层面。在实际工作中,整合运用这三者,才能构建一个既能看到“树木”(单个威胁),也能看清“森林”(攻击活动),还能评估“生态影响”(业务风险)的全面防御能力。

2026-01-05 09:26:34 1184

原创 安全剧本——现代安全运营自动化的核心

安全剧本是安全运营从“手工作坊”迈向“自动化工厂”的标志。它并非要取代安全分析师,而是将分析师从重复、繁琐的“体力劳动”中解放出来,让他们专注于更具价值的战略分析、威胁狩猎和复杂事件调查。在SOAR平台中,安全剧本是其“肌肉”和“执行臂”。结合之前讨论的UEBA(提供智能分析与高保真告警),两者构成了现代SOC的“智能大脑”+“敏捷双手”,是实现“检测 -> 分析 -> 响应”闭环,并将平均响应时间从小时级压缩到分钟级甚至秒级的关键技术体系。

2026-01-04 10:25:24 627

原创 绝大多数传统或独立部署的UEBA系统(用户和实体行为分析),其核心能力是“检测、分析和告警”,而非直接“阻断”

您可以说UEBA是“使能者”而非“执行者”。将海量日志转化为高价值、可行动的威胁情报。大幅降低告警噪音,提升安全团队的研判效率。为自动化响应提供高质量的、情境化的决策依据。所以,虽然UEBA通常“不扣动扳机”,但它是瞄准镜、情报分析中心和开火指令的发出者。在现代安全运营中,一个没有UEBA能力的SOC,就像只有士兵没有侦察兵和情报局的军队;而一个只有UEBA却没有联动响应体系的安全架构,则像有了精准情报却无法下达作战命令的参谋部。两者结合,才能构建完整的“看见-理解-行动”安全闭环。

2026-01-04 09:50:03 621

原创 UEBA——用户和实体行为分析,主要用于检测用户以及网络中实体(网络设备、进程、应用程序等)的异常行为,然后判断异常行为是否存在安全威胁,并及时向运维人员发出告警

UEBA是安全运营中心的“大脑皮层”。它将海量、孤立的低级日志,转化为有关“谁正在做坏事”的高级情报。它不是替代防火墙、IDS等传统安全产品,而是在它们失效或被绕过之后,在内部网络建立起的最后一道、也是最智能的动态防线。在“零信任”架构中,UEBA为“持续验证”提供了关键的动态风险评估依据。它标志着安全防御从“防御周边”进入了“洞察内部”的新阶段。

2026-01-03 11:41:43 549

原创 RDMA(远程直接内存访问——允许外部设备直接访问主机的主存,绕过CPU,从而提高数据传输效率

它通过硬件卸载和内核旁路,将网络从“数据传输的管道”升级为“内存扩展的总线”,是支撑AI大模型训练、云原生存储和下一代数据中心的。

2026-01-03 11:41:22 823

原创 大模型“调参”——我们不直接修改模型内部数十亿个神经网络权重,而是调整那些控制模型“如何学习”和“如何表现”的外部旋钮和配置

对于大模型,普通用户和企业通常不做此阶段调参,而是直接使用预训练好的基座模型。:大模型调参(尤其是训练阶段)代价高昂,应基于经验或文献设定基准,然后有方向地微调。这是我们日常与大模型交互时,最常接触和需要调节的部分。,并做好详细记录,以便清楚地知道哪个参数带来了什么影响。(温度、Top-p、重复惩罚)是打造高质量大模型应用的。在这个阶段,我们使用数据让模型学习。,只通过调整生成策略的参数,来影响模型输出的。接下来,我们分别深入这两个阶段的调参细节。它们的调参目标和方法截然不同。(低温度,高惩罚),还是。

2026-01-02 00:45:09 726

原创 SoC芯片本质——“系统级集成”

这栋楼里,市政办公室(CPU)、内部仓库(内存)、画廊(GPU)、音乐室(音频处理器)、通信基站(基带)、安保中心(安全模块)、物流中心(各种接口)等。它不再是传统意义上功能单一的CPU(中央处理器),而是将一个完整的电子系统所需的关键部件,全部集成到一颗单一的芯片上。,然后像“搭积木”一样,结合自研的NPU、ISP等模块,进行整体的架构设计、验证,最后交由台积电或三星等晶圆厂进行。它们分布在主板(城市地图)的不同位置,通过道路(总线)连接,协作缓慢,功耗高,占地面积大。

2026-01-02 00:44:50 493

原创 大模型检索增强技术——大模型在落地应用时,用以突破其自身“知识瓶颈”和“幻觉问题”的核心技术路径

RAG不是一种单一技术,而是一个将信息检索与大型语言模型紧密耦合的系统工程范式。它代表了大模型从“通才”走向“专才”、从“封闭”走向“开放”的关键一步。随着技术的发展,RAG正变得更加智能和自治(如Self-RAG, Agentic RAG),并与智能体(Agent)技术融合,成为构建下一代可信、可靠AI应用最坚实的基座。要构建优秀的RAG系统,不仅需要理解算法,更需要深刻理解数据、领域知识和系统工程。

2026-01-01 12:29:45 952

原创 GPU池化技术及池化与虚拟化技术的对比

GPU池化技术是AI算力基础设施演进的必然方向。它将算力资源从固定、僵硬的“固定资产”,转变为流动、灵活的“战略资源”。与虚拟化的关系:虚拟化是池化的重要使能技术之一(提供了资源切分和隔离),但池化更关注跨节点的资源聚合与全局调度。未来趋势:池化正与云原生算力网络异构计算等趋势深度融合,目标是实现从数据中心到跨地域的全局算力资源一体化调度与供给,成为AI时代的“电力网格”。

2026-01-01 12:25:55 567

原创 (四个层面分析)GPU虚拟化技术的根本目的——将昂贵且稀缺的GPU算力,从一种独占的物理硬件,转变为一种可灵活调度、高效共享、按需服务的标准化计算资源

你可以将GPU虚拟化的目的归纳为一次深刻的“生产力解放”将GPU从一台需要独占、难以搬运、利用率低下的“超级工作站”,转变为一个可以按片切割、通过网络随时获取、并可被智能调度的“标准化算力单元”。让任何人都能像用水用电一样,便捷、经济、安全地获取强大的AI算力,从而成为驱动人工智能普及和云服务创新的关键基础设施。

2025-12-31 09:46:09 378

原创 GPU虚拟化技术(核心目标、主流技术路径、关键技术等)

选择GPU虚拟化方案,本质上是根据场景在性能、隔离性、灵活性、成本追求极致性能与完整功能,且不介意独占 →GPU直通。需要在多用户间安全共享,且要求接近原生性能 →API转发(vGPU/MIG)。需要极致的灵活性、动态调度和云原生集成,可接受一定的性能损失 →全虚拟化或先进的容器化方案。对于大多数企业级AI云平台和虚拟桌面基础设施而言,以NVIDIA vGPU/MIG为代表的API转发模式是目前公认的最佳实践,它较好地平衡了性能、隔离、管理和成本。

2025-12-31 09:45:49 924

原创 大模型的运行离不开芯片和搭载在它上面的计算框架

在选择技术路线时,必须将芯片和框架作为一个整体来评估。

2025-12-30 11:07:38 1008

原创 一起来对比解析一下GPU和NPU——它们代表了通用计算加速与专用AI计算两种不同的技术哲学

总结GPU是通用并行计算的王者,尤其在AI训练和复杂科学计算领域不可替代。其强大的生态(CUDA)和灵活性是核心优势。NPU是专用AI推理的效率怪兽,在边缘计算、移动设备和大规模AI服务部署中,凭借其超高的能效比和低延迟,成为必然选择。融合趋势异构计算:现代计算平台(如数据中心、自动驾驶域控制器)通常采用的异构组合。CPU负责通用逻辑控制,GPU负责复杂训练和并行任务,NPU负责高并发、低功耗的推理任务,各司其职。GPU的NPU化:NVIDIA在其最新GPU中集成了更强的张量核心。

2025-12-30 11:06:36 832

原创 从内容生产源头区分互联网内容类型的关键框架——什么是UGC、PGC、PUGC?

理解这三者的区别,就能看懂绝大多数内容平台的运作逻辑:一个健康的大众内容平台通常是“UGC打底,PUGC为柱,PGC封顶”的金字塔结构。发展趋势:PUGC正在成为绝对的中坚力量。未来,随着创作工具(如AIGC)的普及和专业用户的持续入场,PUGC的边界会进一步拓宽,成为连接大众娱乐与深度知识的核心地带。如果你对某一类模式在具体平台(如B站、小红书、得到)的运营策略或商业模式有更深兴趣,我们可以继续探讨。

2025-12-29 09:24:44 617

原创 联邦学习和DCI(数据中心互联)之间的关系

联邦学习是“大脑”的分布式训练范式,DCI是“神经中枢”的互联基础设施。前者定义了一种颠覆性的数据处理和机器学习工作流程,而后者为这种流程在跨地域、跨组织的复杂环境下实现,提供了必须的、高质量的网络生命线。它们并非从属,而是在构建下一代分布式智能系统时,形成了一种 “需求”与“使能”、“目标”与“基石” 的紧密协同关系。下面我们从三个层面系统解析这种关系:联邦学习的核心原则是 “数据不动,模型动” 或 “数据可用不可见”。这直接产生了对底层网络的特殊需求:结论:联邦学习的效率(完成一轮迭代的时间)和可行性,

2025-12-29 09:24:15 878

原创 进一步了解一下现代数字经济的核心动脉——DCI(数据中心互联 )

将原始二层帧封装在UDP/IP报文中,突破传统VLAN 4096的数量限制和地理范围限制,实现跨数据中心的虚拟机无感知迁移和IP子网扩展。试着对进行一次全面、系统且深入的剖析。:在单根光纤上复用数十至上百个不同波长的光信号,是提供超大带宽(单波100G/200G/400G,系统可达Tbps级)的基石。,实现从业务发放(分钟级开通一条DCI专线)、路径优化(基于实时流量调整)、到故障自愈(亚秒级切换)的端到端自动化。DCI技术的发展,是驱动数据中心架构从“孤岛”走向“集群”和“云化”的关键。

2025-12-27 11:09:06 1020

原创 理解数据中心互联(DCI)——需要将其看作一个将多个数据中心连成统一计算资源的系统,远不止是拉一根光纤那么简单

总而言之,DCI正从保障“数据可通”的基础设施,演变为决定“算力可用、算力高效”的核心竞争力。尤其是对您之前关注的网络可视化等领域,理解DCI的流量特性和网络架构,是分析跨数据中心流量、优化监控方案的关键前提。“暗光纤”自主可控、扩容灵活但技术门槛高;:DCI网络本身将采用云原生架构,通过软件定义和全局智能调度,实现资源的极致弹性与高效利用。,需要将成千上万的GPU连接成跨数据中心的超级集群,这是DCI当前最核心的驱动力。:未来DCI的发展将与AI集群规模同步扩张,成为“AI超级工厂”的神经系统。

2025-12-27 11:08:33 751

原创 解释一下零样本学习——让机器学习模型能够识别、分类或理解在训练阶段从未见过、没有任何标注样本的新类别

零样本学习的本质,是让AI从“记忆专家”蜕变为“概念推理者”。它通过构建一个共享的语义知识层,使模型能够跨越具体样本的局限,实现“触类旁通”。这不仅是解决数据稀缺问题的关键技术,更是机器迈向人类-like 概念化学习与泛化能力的关键一步。随着多模态大模型的兴起,零样本学习已从一项独立的研究任务,逐渐演变为这些强大基座模型的核心涌现能力之一,正在深刻地改变我们构建和部署AI系统的方式。

2025-12-26 09:11:57 667

原创 鱼叉式钓鱼——将传统钓鱼的“广撒网” 升级为 “精准狙击”

鱼叉式钓鱼的本质,是针对人性的弱点,发起的低成本、高精度的不对称攻击。大幅提高攻击者的成本:使其情报搜集、载荷制作、绕过防御的难度激增。建立快速检测与响应能力:假设攻击总会成功渗透,关键在于能多快发现并遏制。将安全意识转化为肌肉记忆:让每一位员工都成为警觉的哨兵。最先进的攻击往往回归最原始的心理操纵。因此,最坚固的防御也必然是冷峻的技术与温暖的人性洞察相结合的综合体。理解攻击链的每一环,正是为了在我们自身和组织的薄弱处,筑起最理性的防线。

2025-12-26 09:11:35 938

原创 “搜索意图判断”——筛选高转化关键词的灵魂环节

用工具挖掘海量词 -> 用“意图分类表”初筛 -> 将高意图词放入搜索引擎,

2025-12-25 09:23:39 427

原创 了解一下SEO和精准营销中极具价值的“蓝海策略”—— “长尾关键词”

这是一个需要持续进行的工作,积累的这类关键词越多,你的流量护城河就越深。

2025-12-25 09:23:18 1222

原创 联邦学习:旨在破解“数据孤岛”与“隐私保护”之间的根本矛盾。

联邦学习不是一种具体的算法,而是一种。

2025-12-24 10:59:43 754

原创 量子安全认证的核心——是利用量子力学的物理定律(如不可克隆定理)来确保通信方身份的真实性,从而能从物理层面根除伪基站等号码仿冒攻击

它并不是简单的算法升级,而是一种安全范式的根本转变。

2025-12-24 09:24:33 992

原创 初步了解一下——量子超级SIM卡的工作原理

安全层学术名称与标准技术作用与原理对抗的威胁模型基础层国密算法 (GM/T系列)实现与国家密码标准完全兼容的身份认证、数据完整性校验和加密。是功能与合规的基石。常规的网络监听、中间人攻击、伪基站仿冒(若单独使用,仍有理论风险)。抗量子层后量子密码 (PQC)(NIST标准化算法,如CRYSTALS系列)核心是更换了“密码学困难问题”。将安全基石从整数分解/离散对数(易受量子Shor算法攻击)替换为格上最短向量、模块化格等即使在量子计算下仍被认为困难的数学问题。未来的量子计算机。

2025-12-23 10:14:23 735

原创 “QKD与PQC融合”的技术细节,通俗与学术融合仔细讲解

模式一(PQC for QKD)是“打补丁”,用抗量子的软件算法修补了QKD硬件系统的先天身份认证缺陷,确保了QKD起点的纯净。模式二(QKD for PQC)是“上保险”,用量子物理的“绝对安全”为后量子数学的“假设安全”提供了一层终极保障,创造了人类目前能构想出的最强大的通信安全形态。这两者的协同,正为我们铺就一条从当前易受攻击的数字世界,平稳过渡到未来可抵御任何已知和未知计算威胁的量子安全世界的坚实道路。

2025-12-23 09:53:39 805

原创 用户行为画像:从数据碎片到数字灵魂的建模术(本质是构建用户的 “数字孪生”)

用户行为画像是一门。

2025-12-22 13:34:07 884

原创 猫池:黑产的“手机农场”与攻防最前线

猫池是黑产。

2025-12-22 13:21:36 814

原创 安全SDK:无感采集用户在APP内的交互行为(点击速度、滑动轨迹、停留时长),用于后续的行为生物特征分析

若检测到操作行为与账户主人基线严重不符,即使密码正确,也可触发二次验证或直接拦截,有效防止账户被盗后的资金损失。它基于一个核心假设:每个人的交互习惯——如点击的精确度、滑动的加速度、打字的节奏——具有。:“你知道什么”(密码)、“你拥有什么”(手机)、“你是什么”(指纹/人脸)。:后续每次使用,SDK都会将本次会话的行为特征与存储的基线模型进行实时比对。:脚本的点击轨迹(如直线、固定延迟)与真人截然不同,可精准识别并过滤。:加密传输与存储,定期删除原始行为数据,仅保留不可逆的模型特征。

2025-12-19 13:19:36 1299

原创 应用加固与反调试——关乎应用(尤其是移动App和桌面软件)的代码资产保护

将加密算法(如AES)的密钥与算法本身深度融合,确保即使在内存中,也无法通过简单的调试提取出完整密钥。原始代码被压缩或加密。:逆向者面对的不再是熟悉的CPU指令,而是一套需要重新逆向的私有指令集,分析成本指数级上升。:将正常的顺序、分支、循环结构打乱,加入不可达代码和无条件跳转,使流程图异常复杂。:检查设备指纹(如IMEI、型号、传感器)、硬件特性、驱动程序等是否与真机不符。:将硬编码的字符串(如API密钥、错误信息)加密存储,运行时解密使用。:根据应用价值(金融、游戏、企业核心软件)确定所需的安全等级。

2025-12-19 11:40:27 812

原创 STIX/TAXII:网络威胁情报的“普通话”与“顺丰快递”

STIX/TAXII共同为网络安全领域提供了一套。

2025-12-19 09:24:08 476

原创 无头浏览器,没有“头”?不是啦,其实是自动化、可编程的浏览器,只是没有图形化用户界面

是一种没有图形用户界面的网络浏览器。它通过。

2025-12-19 09:23:15 872

原创 SEO技术——搜索引擎优化(定义与本质、核心支柱、技术架构、现代技术栈、黑帽与白帽、商业价值及未来挑战)

使用 Screaming Frog, Sitebulb 等工具,像搜索引擎一样扫描全站,发现爬取障碍(错误4xx/5xx、错误重定向、Robots.txt限制、错误 canonical 标签)。:分析目标关键词的搜索结果页面,是否包含精选摘要、知识图谱、视频轮播、本地包等,以确定最优内容格式。:通过合理的锚文本,在网站内部传递权重,并建立清晰的页面层次(如:首页 > 分类页 > 文章页)。:对于实体业务,优化Google商家档案,管理在线评价,确保NAP(名称、地址、电话)信息一致。

2025-12-18 09:40:18 1286

原创 DGA:恶意软件的“隐身术”与安全对抗的“猫鼠游戏”

DGA技术体现了网络安全领域一场持续的。

2025-12-18 09:39:49 1364

加法器.circ

加法器.circ

2022-11-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除