如何利用MaxKB知识库问答系统v1.9版本的改进来提升知识管理效率?
应用功能方面
利用图片生成节点:
对于一些需要用图片来展示的知识,如流程图、架构图、思维导图等,管理员可以配置图片生成节点,快速生成高质量的图片。例如,在讲解复杂的业务流程时,不再需要手动绘制或寻找合适的图片,直接通过 MaxKB 生成并插入到知识库中,使知识的呈现更加直观和清晰,方便用户理解和记忆,提高知识传递效率。
使用语音功能:
利用新增的语音转文本节点和文本转语音节点,用户可以更加便捷地进行提问和获取答案。例如,在忙碌的工作场景中,用户可以通过语音快速输入问题,系统自动将语音转换为文本并进行回答,然后再将回答转换为语音输出,实现了真正的 “解放双手”,提高了问答效率。对于视力不佳或不便于阅读文字的用户,语音功能也提供了更好的使用体验,使得更多人能够更高效地获取知识。
导出和导入应用:
当需要在不同的环境或设备中使用相同的知识库应用时,可以利用导出和导入应用功能。例如,在企业内部,不同部门可能需要共享相同的知识库设置和工作流,管理员可以将配置好的应用导出为 “应用.mk” 文件格式,然后在其他部门的 MaxKB 系统中快速导入,避免了重复配置的工作,节省了时间和精力,提高了知识管理的整体效率。
知识库管理方面
丰富的文件格式支持:
上传文档时新增的 XLS、XLSX、CSV、ZIP 等文件格式,方便了用户将各种类型的知识文件快速导入到知识库中。例如,对于一些以表格形式存储的数据文件,如市场调研数据、财务报表等,可以直接上传并进行向量化处理,使其能够被系统快速检索和利用,减少了数据转换和整理的时间成本,提高了知识的整合效率。
批量操作功能:
文档列表支持批量取消向量化和批量取消生成问题的功能优化,使得管理员在对知识库进行维护和管理时更加高效。例如,当需要对一批不再使用或需要重新向量化的文档进行处理时,可以一次性选择多个文档进行批量操作,而不需要逐个进行处理,大大节省了操作时间,提高了知识库的管理效率。
模型管理方面
多样化的模型选择和设置:
图片理解模型和图片生成模型新增支持多种供应商,如 Xinference、Ollama、豆包、阿里云百炼、Azure OpenAI、Gemini 等,以及创建模型时支持设置模型参数,用户可以根据具体的业务需求和场景选择最合适的模型,并进行个性化的参数设置。例如,对于需要高精度图片理解的知识库应用,可以选择性能更优的图片理解模型;对于对生成图片风格有特定要求的应用,可以通过设置模型参数来满足需求,从而提高知识处理和展示的效果和效率。
利用 Azure OpenAI 供应商的新增功能:
Azure OpenAI 供应商新增支持了语音识别、语音合成和向量模型,用户可以充分利用这些功能来优化知识库的问答流程。例如,在进行语音问答时,利用 Azure OpenAI 的语音识别和语音合成功能,可以实现更加流畅和自然的交互;利用其向量模型,可以提高知识的向量化表示和检索效率,从而提升整个知识管理系统的性能。