- 博客(5)
- 资源 (4)
- 收藏
- 关注
原创 WALA---Java程序静态切片技术
上一次,我们讲述了如何使用wala对类进行最简单的分析,这次将使用wala工具,进行静态切片分析。如果对切片不是很熟悉,可以直接搜索 程序切片,有很多关于切片技术的讲解,这里不在讲述。步入主题:首先,在上一次ClassHierarchy cha的基础上,需要构建入口点,分析选项,反射机制,如下所示: Iterable entrypoints =Util.makeMainEntrypo
2018-01-02 09:57:19 5863
原创 WALA安装和简单使用
WALA是IBM公司于2006年开源,目前可以从github上获取源码,编译,使用,但是在国内,编译WALA可能会被qiang,所以,直接使用maven仓库中已经编译好的WALA二进制包是最为方便的。WALA核心功能:Java的系统类型和类的层次结构分析源语言框架支持java和javascript过程间数据流分析(RHS的求解器)基于上下文敏感的切片指针分析与调用图构造基于SSA的寄存器转换语言I
2017-12-12 11:02:29 10193 5
原创 WALA---Java程序静态切片技术(二)
上一篇博客中已经把基础的WALA切片方法讲述,本篇博客将基于上一篇做进一步的讲解。上一篇中提到,使用util类构建call graph,util类下不同函数构建call graph的精确度不同,导致构建call graph时间不同,按精确度来说是N构建SDG图时(这里控制流和数据流值的选择会影响之后切片结果的精细度),可用的数据流项: FULL:跟踪所有的数据依赖 NO_BASE_
2018-01-18 14:54:37 2986
原创 随机采样方法研究综述
鉴于深度学习在学术界和工业界的重要性,向对目前有代表性的深度学习数据随机采样算法进行归纳和总结,综述了不同类型随机采样算法的基本思想和方法。首先介绍了深度学习和随机采样的概念;然后根据深度学习算法的随机采样方法,概述了接受-拒绝抽样、重要性采样、MCMC方法和吉布斯采样3类主流随机采样的基本思想和方法;可以看到:深度学习在不同应用领域都取得了明显的优势,但仍存在需要进一步探
2017-06-12 11:00:53 2184
原创 谷歌论文阅读:Building High-level Features Using Large Scale Unsupervised Learning
使用大规模无监督的深度机器学习网络进行高级特征学习
2017-06-12 10:24:06 1618
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人