代码随想录算法训练营第五十七天 | prim算法精讲、kruskal算法精讲

prim算法精讲

1、题目

题目描述:

在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。

不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将 所有岛屿联通起来。

给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。

输入描述:

第一行包含两个整数V 和 E,V代表顶点数,E代表边数 。顶点编号是从1到V。例如:V=2,一个有两个顶点,分别是1和2。

接下来共有 E 行,每行三个整数 v1,v2 和 val,v1 和 v2 为边的起点和终点,val代表边的权值。

输出描述:

输出联通所有岛屿的最小路径总距离

输入示例:

7 11
1 2 1
1 3 1
1 5 2
2 6 1
2 4 2
2 3 2
3 4 1
4 5 1
5 6 2
5 7 1
6 7 1

输出示例:

6

2、题解

本题是最小生成树的模板题,那么我们来讲一讲最小生成树。

最小生成树 可以使用 prim算法 也可以使用 kruskal算法计算出来。

本篇我们先讲解 prim算法。

最小生成树是所有节点的最小连通子图, 即:以最小的成本(边的权值)将图中所有节点链接到一起。

图中有n个节点,那么一定可以用 n - 1 条边将所有节点连接到一起。

那么如何选择 这 n-1 条边 就是 最小生成树算法的任务所在。

例如本题示例中的无向有权图为:

img

那么在这个图中,如何选取 n-1 条边 使得 图中所有节点连接到一起,并且边的权值和最小呢?

(图中为n为7,即7个节点,那么只需要 n-1 即 6条边就可以讲所有顶点连接到一起)

prim算法 是从节点的角度 采用贪心的策略 每次寻找距离 最小生成树最近的节点 并加入到最小生成树中。

prim算法核心就是三步,我称为prim三部曲,大家一定要熟悉这三步,代码相对会好些很多:

  1. 第一步,选距离生成树最近节点
  2. 第二步,最近节点加入生成树
  3. 第三步,更新非生成树节点到生成树的距离(即更新minDist数组)

现在录友们会对这三步很陌生,不知道这是干啥的,没关系,下面将会画图举例来带大家把这prim三部曲理解到位。

在prim算法中,有一个数组特别重要,这里我起名为:minDist。

刚刚我有讲过 “每次寻找距离 最小生成树最近的节点 并加入到最小生成树中”,那么如何寻找距离最小生成树最近的节点呢?

这就用到了 minDist 数组, 它用来作什么呢?

minDist数组 用来记录 每一个节点距离最小生成树的最近距离。 理解这一点非常重要,这也是 prim算法最核心要点所在,很多录友看不懂prim算法的代码,都是因为没有理解透 这个数组的含义。

接下来,我们来通过一步一步画图,来带大家巩固 prim三部曲 以及 minDist数组 的作用。

示例中节点编号是从1开始,所以为了让大家看的不晕,minDist数组下标我也从 1 开始计数,下标0 就不使用了,这样 下标和节点标号就可以对应上了,避免大家搞混

1 初始状态

minDist 数组 里的数值初始化为 最大数,因为本题 节点距离不会超过 10000,所以 初始化最大数为 10001就可以。

相信这里录友就要问了,为什么这么做?

现在 还没有最小生成树,默认每个节点距离最小生成树是最大的,这样后面我们在比较的时候,发现更近的距离,才能更新到 minDist 数组上。

如图:

img

开始构造最小生成树

2

1、prim三部曲,第一步:选距离生成树最近节点

选择距离最小生成树最近的节点,加入到最小生成树,刚开始还没有最小生成树,所以随便选一个节点加入就好(因为每一个节点一定会在最小生成树里,所以随便选一个就好),那我们选择节点1 (符合遍历数组的习惯,第一个遍历的也是节点1)

2、prim三部曲,第二步:最近节点加入生成树

此时 节点1 已经算最小生成树的节点。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

接下来,我们要更新所有节点距离最小生成树的距离,如图:

img

注意下标0,我们就不管它了,下标 1 与节点 1 对应,这样可以避免大家把节点搞混。

此时所有非生成树的节点距离 最小生成树(节点1)的距离都已经跟新了 。

  • 节点2 与 节点1 的距离为1,比原先的 距离值10001小,所以更新minDist[2]。
  • 节点3 和 节点1 的距离为1,比原先的 距离值10001小,所以更新minDist[3]。
  • 节点5 和 节点1 的距离为2,比原先的 距离值10001小,所以更新minDist[5]。

注意图中我标记了 minDist数组里更新的权值,是哪两个节点之间的权值,例如 minDist[2] =1 ,这个 1 是 节点1 与 节点2 之间的连线,清楚这一点对最后我们记录 最小生成树的权值总和很重要。

(我在后面依然会不断重复 prim三部曲,可能基础好的录友会感觉有点啰嗦,但也是让大家感觉这三部曲求解的过程)

3

1、prim三部曲,第一步:选距离生成树最近节点

选取一个距离 最小生成树(节点1) 最近的非生成树里的节点,节点2,3,5 距离 最小生成树(节点1) 最近,选节点 2(其实选 节点3或者节点2都可以,距离一样的)加入最小生成树。

2、prim三部曲,第二步:最近节点加入生成树

此时 节点1 和 节点2,已经算最小生成树的节点。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

接下来,我们要更新节点距离最小生成树的距离,如图:

img

此时所有非生成树的节点距离 最小生成树(节点1、节点2)的距离都已经跟新了 。

  • 节点3 和 节点2 的距离为2,和原先的距离值1 小,所以不用更新。
  • 节点4 和 节点2 的距离为2,比原先的距离值10001小,所以更新minDist[4]。
  • 节点5 和 节点2 的距离为10001(不连接),所以不用更新。
  • 节点6 和 节点2 的距离为1,比原先的距离值10001小,所以更新minDist[6]。
4

1、prim三部曲,第一步:选距离生成树最近节点

选择一个距离 最小生成树(节点1、节点2) 最近的非生成树里的节点,节点3,6 距离 最小生成树(节点1、节点2) 最近,选节点3 (选节点6也可以,距离一样)加入最小生成树。

2、prim三部曲,第二步:最近节点加入生成树

此时 节点1 、节点2 、节点3 算是最小生成树的节点。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

接下来更新节点距离最小生成树的距离,如图:

img

所有非生成树的节点距离 最小生成树(节点1、节点2、节点3 )的距离都已经跟新了 。

  • 节点 4 和 节点 3的距离为 1,和原先的距离值 2 小,所以更新minDist[3]为1。

上面为什么我们只比较 节点4 和 节点3 的距离呢?

因为节点3加入 最小生成树后,非 生成树节点 只有 节点 4 和 节点3是链接的,所以需要重新更新一下 节点4距离最小生成树的距离,其他节点距离最小生成树的距离 都不变。

5

1、prim三部曲,第一步:选距离生成树最近节点

继续选择一个距离 最小生成树(节点1、节点2、节点3) 最近的非生成树里的节点,为了巩固大家对 minDist数组的理解,这里我再啰嗦一遍:

img

minDist数组 是记录了 所有非生成树节点距离生成树的最小距离,所以 从数组里我们能看出来,非生成树节点 4 和 节点 6 距离 生成树最近。

任选一个加入生成树,我们选 节点4(选节点6也行) 。

注意,我们根据 minDist数组,选取距离 生成树 最近的节点 加入生成树,那么 minDist数组里记录的其实也是 最小生成树的边的权值(我在图中把权值对应的是哪两个节点也标记出来了)。

如果大家不理解,可以跟着我们下面的讲解,看 minDist数组的变化, minDist数组 里记录的权值对应的哪条边。

理解这一点很重要,因为 最后我们要求 最小生成树里所有边的权值和。

2、prim三部曲,第二步:最近节点加入生成树

此时 节点1、节点2、节点3、节点4 算是 最小生成树的节点。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

接下来更新节点距离最小生成树的距离,如图:

img

minDist数组已经更新了 所有非生成树的节点距离 最小生成树(节点1、节点2、节点3、节点4 )的距离 。

  • 节点 5 和 节点 4的距离为 1,和原先的距离值 2 小,所以更新minDist[4]为1。
6

1、prim三部曲,第一步:选距离生成树最近节点

继续选距离 最小生成树(节点1、节点2、节点3、节点4 )最近的非生成树里的节点,只有 节点 5 和 节点6。

选节点5 (选节点6也可以)加入 生成树。

2、prim三部曲,第二步:最近节点加入生成树

节点1、节点2、节点3、节点4、节点5 算是 最小生成树的节点。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

接下来更新节点距离最小生成树的距离,如图:

img

minDist数组已经更新了 所有非生成树的节点距离 最小生成树(节点1、节点2、节点3、节点4 、节点5)的距离 。

  • 节点 6 和 节点 5 距离为 2,比原先的距离值 1 大,所以不更新
  • 节点 7 和 节点 5 距离为 1,比原先的距离值 10001小,更新 minDist[7]
7

1、prim三部曲,第一步:选距离生成树最近节点

继续选距离 最小生成树(节点1、节点2、节点3、节点4 、节点5)最近的非生成树里的节点,只有 节点 6 和 节点7。

2、prim三部曲,第二步:最近节点加入生成树

选节点6 (选节点7也行,距离一样的)加入生成树。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

节点1、节点2、节点3、节点4、节点5、节点6 算是 最小生成树的节点 ,接下来更新节点距离最小生成树的距离,如图:

img

这里就不在重复描述了,大家类推,最后,节点7加入生成树,如图:

img

最后

最后我们就生成了一个 最小生成树, 绿色的边将所有节点链接到一起,并且 保证权值是最小的,因为我们在更新 minDist 数组的时候,都是选距离 最小生成树最近的点 加入到树中。

讲解上面的模拟过程的时候,我已经强调多次 minDist数组 是记录了 所有非生成树节点距离生成树的最小距离。

最后,minDist数组 也就是记录的是最小生成树所有边的权值。

我在图中,特别把 每条边的权值对应的是哪两个节点 标记出来(例如minDist[7] = 1,对应的是节点5 和 节点7之间的边,而不是 节点6 和 节点7),为了就是让大家清楚, minDist里的每一个值 对应的是哪条边。

那么我们要求最小生成树里边的权值总和 就是 把 最后的 minDist 数组 累加一起。

以下代码,我对 prim三部曲,做了重点注释,大家根据这三步,就可以 透彻理解prim。

#include<iostream>
#include<vector>
#include <climits>

using namespace std;
int main() {
    int v, e;
    int x, y, k;
    cin >> v >> e;
    // 填一个默认最大值,题目描述val最大为10000
    vector<vector<int>> grid(v + 1, vector<int>(v + 1, 10001));
    while (e--) {
        cin >> x >> y >> k;
        // 因为是双向图,所以两个方向都要填上
        grid[x][y] = k;
        grid[y][x] = k;

    }
    // 所有节点到最小生成树的最小距离
    vector<int> minDist(v + 1, 10001);

    // 这个节点是否在树里
    vector<bool> isInTree(v + 1, false);

    // 我们只需要循环 n-1次,建立 n - 1条边,就可以把n个节点的图连在一起
    for (int i = 1; i < v; i++) {

        // 1、prim三部曲,第一步:选距离生成树最近节点
        int cur = -1; // 选中哪个节点 加入最小生成树
        int minVal = INT_MAX;
        for (int j = 1; j <= v; j++) { // 1 - v,顶点编号,这里下标从1开始
            //  选取最小生成树节点的条件:
            //  (1)不在最小生成树里
            //  (2)距离最小生成树最近的节点
            if (!isInTree[j] &&  minDist[j] < minVal) {
                minVal = minDist[j];
                cur = j;
            }
        }
        // 2、prim三部曲,第二步:最近节点(cur)加入生成树
        isInTree[cur] = true;

        // 3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)
        // cur节点加入之后, 最小生成树加入了新的节点,那么所有节点到 最小生成树的距离(即minDist数组)需要更新一下
        // 由于cur节点是新加入到最小生成树,那么只需要关心与 cur 相连的 非生成树节点 的距离 是否比 原来 非生成树节点到生成树节点的距离更小了呢
        for (int j = 1; j <= v; j++) {
            // 更新的条件:
            // (1)节点是 非生成树里的节点
            // (2)与cur相连的某节点的权值 比 该某节点距离最小生成树的距离小
            // 很多录友看到自己 就想不明白什么意思,其实就是 cur 是新加入 最小生成树的节点,那么 所有非生成树的节点距离生成树节点的最近距离 由于 cur的新加入,需要更新一下数据了
            if (!isInTree[j] && grid[cur][j] < minDist[j]) {
                minDist[j] = grid[cur][j];
            }
        }
    }
    // 统计结果
    int result = 0;
    for (int i = 2; i <= v; i++) { // 不计第一个顶点,因为统计的是边的权值,v个节点有 v-1条边
        result += minDist[i];
    }
    cout << result << endl;

}

时间复杂度为 O(n^2),其中 n 为节点数量。

kruskal算法精讲

1、题目

题目描述:

在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。

不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将 所有岛屿联通起来。

给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。

输入描述:

第一行包含两个整数V 和 E,V代表顶点数,E代表边数 。顶点编号是从1到V。例如:V=2,一个有两个顶点,分别是1和2。

接下来共有 E 行,每行三个整数 v1,v2 和 val,v1 和 v2 为边的起点和终点,val代表边的权值。

输出描述:

输出联通所有岛屿的最小路径总距离

输入示例:

7 11
1 2 1
1 3 1
1 5 2
2 6 1
2 4 2
2 3 2
3 4 1
4 5 1
5 6 2
5 7 1
6 7 1

输出示例:

6

2、题解

在上一篇 我们讲解了 prim算法求解 最小生成树,本篇我们来讲解另一个算法:Kruskal,同样可以求最小生成树。

prim 算法是维护节点的集合,而 Kruskal 是维护边的集合

上来就这么说,大家应该看不太懂,这里是先让大家有这么个印象,带着这个印象在看下文,理解的会更到位一些。

kruscal的思路:

  • 边的权值排序,因为要优先选最小的边加入到生成树里
  • 遍历排序后的边
    • 如果边首尾的两个节点在同一个集合,说明如果连上这条边图中会出现环
    • 如果边首尾的两个节点不在同一个集合,加入到最小生成树,并把两个节点加入同一个集合

下面我们画图举例说明kruscal的工作过程。

依然以示例中,如下这个图来举例。

img

将图中的边按照权值有小到大排序,这样从贪心的角度来说,优先选 权值小的边加入到 最小生成树中。

排序后的边顺序为[(1,2) (4,5) (1,3) (2,6) (3,4) (6,7) (5,7) (1,5) (3,2) (2,4) (5,6)]

(1,2) 表示节点1 与 节点2 之间的边。权值相同的边,先后顺序无所谓。

开始从头遍历排序后的边


选边(1,2),节点1 和 节点2 不在同一个集合,所以生成树可以添加边(1,2),并将 节点1,节点2 放在同一个集合。

img


选边(4,5),节点4 和 节点 5 不在同一个集合,生成树可以添加边(4,5) ,并将节点4,节点5 放到同一个集合。

img

大家判断两个节点是否在同一个集合,就看图中两个节点是否有绿色的粗线连着就行


(这里在强调一下,以下选边是按照上面排序好的边的数组来选择的)

选边(1,3),节点1 和 节点3 不在同一个集合,生成树添加边(1,3),并将节点1,节点3 放到同一个集合。

img


选边(2,6),节点2 和 节点6 不在同一个集合,生成树添加边(2,6),并将节点2,节点6 放到同一个集合。

img


选边(3,4),节点3 和 节点4 不在同一个集合,生成树添加边(3,4),并将节点3,节点4 放到同一个集合。

img


选边(6,7),节点6 和 节点7 不在同一个集合,生成树添加边(6,7),并将 节点6,节点7 放到同一个集合。

img


选边(5,7),节点5 和 节点7 在同一个集合,不做计算。

选边(1,5),两个节点在同一个集合,不做计算。

后面遍历 边(3,2),(2,4),(5,6) 同理,都因两个节点已经在同一集合,不做计算。


此时 我们就已经生成了一个最小生成树,即:

img

在上面的讲解中,看图的话 大家知道如何判断 两个节点 是否在同一个集合(是否有绿色的线连在一起),以及如何把两个节点加入集合(就在图中把两个节点连上)

但在代码中,如果将两个节点加入同一个集合,又如何判断两个节点是否在同一个集合呢

这里就涉及到我们之前讲解的并查集。

我们在并查集开篇的时候就讲了,并查集主要就两个功能:

  • 将两个元素添加到一个集合中
  • 判断两个元素在不在同一个集合

大家发现这正好符合 Kruskal算法的需求,这也是为什么 要先讲并查集,再讲 Kruskal

本题代码如下,已经详细注释:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

// l,r为 边两边的节点,val为边的数值
struct Edge {
    int l, r, val;
};

// 节点数量
int n = 10001;
// 并查集标记节点关系的数组
vector<int> father(n, -1); // 节点编号是从1开始的,n要大一些

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}

// 并查集的查找操作
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}

// 并查集的加入集合
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}

int main() {

    int v, e;
    int v1, v2, val;
    vector<Edge> edges;
    int result_val = 0;
    cin >> v >> e;
    while (e--) {
        cin >> v1 >> v2 >> val;
        edges.push_back({v1, v2, val});
    }

    // 执行Kruskal算法
    // 按边的权值对边进行从小到大排序
    sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) {
            return a.val < b.val;
    });

    // 并查集初始化
    init();

    // 从头开始遍历边
    for (Edge edge : edges) {
        // 并查集,搜出两个节点的祖先
        int x = find(edge.l);
        int y = find(edge.r);

        // 如果祖先不同,则不在同一个集合
        if (x != y) {
            result_val += edge.val; // 这条边可以作为生成树的边
            join(x, y); // 两个节点加入到同一个集合
        }
    }
    cout << result_val << endl;
    return 0;
}

时间复杂度:nlogn (快排) + logn (并查集) ,所以最后依然是 nlogn 。n为边的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值