MYSQL IN 与 EXISTS 的优化示例介绍,mysql exists

MYSQL IN 与 EXISTS 的优化示例介绍,mysqlexists


优化原则:小表驱动大表,即小的数据集驱动大的数据集。

############# 原理 (RBO) #####################

select * from A where id in (select id from B)
等价于:
for select id from B
for select * from A where A.id = B.id

当B表的数据集必须小于A表的数据集时,用in优于exists。

select * from A where exists (select 1 from B where B.id = A.id)
等价于
for select * from A
for select * from B where B.id = A.id

当A表的数据集系小于B表的数据集时,用exists优于in。

注意:A表与B表的ID字段应建立索引。

例如:

/** 执行时间:0.313s **/
SELECT SQL_NO_CACHE * FROM rocky_member m WHERE EXISTS (SELECT 1 FROM rocky_vip_appro a WHERE m.ID = a.user_id AND a.passed = 1);
/** 执行时间:0.160s **/
SELECT SQL_NO_CACHE * FROM rocky_member m WHERE m.ID in(SELECT ID FROM rocky_vip_appro WHERE passed = 1);

not in 和not exists用法类似。


mysql exists与in 具体不同在什地方

in 是把外表和内表作hash 连接;
exists 是对外表作loop循环,每次loop循环再对内表进行查询。

一直以来认为exists比in效率高的说法是不准确的。
如果查询的两个表大小相当,那么用in和exists差别不大。
如果两个表中一个较小,一个是大表,则子查询表大的用exists,子查询表小的用in。

希望对你有帮助。
 

MYSQL NOT IN优化

算法上存在很大问题。我们先来分析该算法的执行次数。
按照你的方法,record表中的id字段要全部查询一遍,也就是2W次查询,而每次查询,最坏

情况下需要与offline_record中的rec.id进行4W次比较,这又导致offline_record表的4W次

查询(取rec_id )。假设满足
a.* from record a where a.id not in(select b.rec_id from offline_record);
条件的记录一共有N条,那么,最坏情况下,该算法所做的查询次数为:
2W(取record.id)+2W*4W(每取一次record.id就要取一次offline_record.rec_id且offline_record的最后一条数据满足条件)+N(每

条满足条件的记录需要再在record中取该记录全部数据)
所做的比较次数为:
2W*4w

考虑最好情况下的效率,该算法所做的查询次数为:
2W(取record.id)+2W*1(每取一次record.id就要取一次offline_record.rec_id且offline_record的第一条数据满足条件)+N(N(每

条满足条件的记录需要再在record中取该记录全部数据)
所做的比较次数为:
2W*1
因此,该算法平均查询次数为:
2W+(4w*2w+1)*2w/2+N ->8*10^12
天文数字!这还不考虑将近4亿次的平均比较次数,所以你的执行效率当然低了

下面,我们对该算法来进行优化:
算法主要解决的问题是,取表record中id不等于offline_record.rec_id的数据。现假定id为record的主键(你的问题没有指明,但是你会看到无论id是否主键都不影响分析),设计算法如下:
1、取offline_record.rec_id的结果为集合,并对该集合进行排序,设最终生成的集合为A 。则,查询数据库4w次,生成集合的算法按照O(N*ln N)的效率来算平均情况下比较O(4W*ln 4w),约等于64W次,排序次数按照O(N*ln N)的效率来算平均情况下比较O(4W*ln 4w),约等于64W次。

2、顺序取record中的id与第一步生成的集合A进行比较,从而得出最终结果。该过程中由于record.id与A均为有序表,所以比较次数为2w次,查询次数为2w+N次。

如上算法,查询次数为 4W+2W+N=6W+N次,平均比较次数为 64W+64W+2W=130w次。
显而易见,该算法对原算法进行了最大的优化,大概将速度提高了10*8倍。
考虑到对数据库的查询时间远远大于排序比较时间,改进厚的算法在实际操作中还会有更好的表现。

至于你对mysql查询语句的优化,则是治标不治本之举,虽然有用,但毕竟是微小量变,不足与影响全局,在一个坏的算法下,几乎不能提升性能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值