- 博客(5)
- 收藏
- 关注
转载 贝叶斯公式的前世今生
引言AlphaGo为代表的人工智能,彻底的战胜了人类的围棋大师,震撼了全世界,那么人工智能的背后,有着怎样的科技在支撑?本文要介绍的就是人工智能背后的简单原理——贝叶斯公式。人工智能、无人驾驶、语音图片识别与大数据有什么关系?海难空难如何搜救?垃圾短信、垃圾邮件如何识别?这些看起来彼此不相关的领域之间会有什么联系吗?答案是,它们都会用到同一个数学公式——贝叶斯公式。它虽然看起来很简单、很不起眼,但却有着深刻的内涵。那么贝叶斯公式是如何从默默无闻到现在广泛应用、无所不能的呢?先来看两个经典例子。01天
2020-10-20 11:02:09 5022 1
原创 Python dataframe 获取行的索引号 根据索引号获取行号
Python dataframe 获取行的索引号@TOCPython dataframe 获取行的索引号 根据索引号获取行号在对dataframe进行一系列操作后,其索引会被打乱,但我们并不需要对其进行重置索引号,而是利用已被打乱的索引号进行行数据操作,那么怎么获取到某行的索引号呢?反过来,已知索引号,怎么获得它在哪一行呢?代码1、获取行对应的索引号// An highlighted blockindex_list = DF.index.tolist() #该代码返回所有的索引号组成的列表pr
2020-09-04 11:42:20 18853
原创 浅谈决策树
浅谈决策树算法思想概述以“树”为原型。决策过程的不断深入,就如树从根至叶,一步步递进。决策树算法组成1、特征选择特征选择的目的是选取能够对训练集分类的特征。特征选择的关键是准则:信息增益、信息增益比、Gini指数2、树的生成通常是利用信息增益最大、信息增益比最大、Gini指数最小作为特征选择的准则。从根节点开始,递归的生成决策树。相当于是不断选取局部最优特征,或将训练集分割为基本能够...
2019-11-18 11:06:24 219
原创 马氏距离详解
马氏距离详解一、理性认知二、感性认知第一个例子第二个例子三、实例认知四、公式推导推导过程致谢一、理性认知马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示点与一个分布之间的距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是,它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重...
2019-11-03 17:32:51 24873 3
转载 度量学习——笔记
度量学习——笔记本文的目的仅仅是对“度量学习”做一个简单的解释。1 何为度量学习度量学习(Metric Learning) 是人脸识别中常用的传统机器学习方法,由Eric Xing在NIPS 2002提出,可以分为两种:一种是通过线性变换的度量学习,另一种是通过非线性变化的度量。其基本原理是***根据不同的任务来自主学习出针对某个特定任务的度量距离函数。***后来度量学习又被迁移至文本分类领...
2019-10-12 09:27:33 405
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人