最长回文串(Longest Palindromic Substring)

 

转自:http://blog.csdn.net/hopeztm/article/details/7932245


思路2. KMP匹配

第二个思路来源于字符串匹配,最长回文串有如下性质: 

对于串S, 假设它的 Reverse是 S', 那么S的最长回文串是 S 和 S' 的最长公共字串。

例如 S = abcddca, S' = acddcba, S和S'的最长公共字串是 cddc 也是S的最长回文字串。

如果S‘是 模式串,我们可以对S’的所有后缀枚举(S0, S1, S2, Sn) 然后用每个后缀和S匹配,寻找最长的匹配前缀。

例如当前枚举是 S0 = acddcba 最长匹配前缀是 a

S1 = cddcba 最长匹配前缀是 cddc

S2 = ddcba 最长匹配前缀是 ddc

当然这个过程可以做适当剪枝,如果当前枚举的后缀长度,小于当前找到的最长匹配,则直接跳过。


Java 代码如下:

[java]   view plain copy print ?
  1. public class Solution {
  2. private int[] next;
  3. private void GetNext(String s) //KMP求next数组
  4. {
  5. int i,j;
  6. i = 0;
  7. j = -1;
  8. next[0] = -1;
  9. while( i < s.length())
  10. {
  11. if( j == -1 || s.charAt(i) == s.charAt(j))
  12. {
  13. i++;
  14. j++;
  15. next[i] = j;
  16. }
  17. else
  18. {
  19. j = next[j];
  20. }
  21. }
  22. }
  23. private int compare(String pattern, String s) //用KMP算法做求出最长的前缀匹配
  24. {
  25. int i,j;
  26. i = 0;
  27. j = 0;
  28. int maxLen = 0;
  29. while( i < s.length())
  30. {
  31. if(j == -1 || pattern.charAt(j) == s.charAt(i))
  32. {
  33. i++;
  34. j++;
  35. }
  36. else
  37. {
  38. j = next[j];
  39. }
  40. if( j > maxLen)
  41. {
  42. maxLen = j;
  43. }
  44. if(j == pattern.length())
  45. {
  46. return maxLen;
  47. }
  48. }
  49. return maxLen;
  50. }
  51. public String longestPalindrome(String s) //
  52. {
  53. // Start typing your Java solution below
  54. // DO NOT write main() function
  55. String reverString = new StringBuilder(s).reverse().toString(); //求得到 输入string 的reverse
  56. next = new int[s.length() + 1];
  57. String maxPal = "";
  58. int maxLen = 0;
  59. int len;
  60. for(int i = 0; i < s.length(); i++) //枚举所有后缀
  61. {
  62. String suffix = reverString.substring(i);
  63. if(suffix.length() < maxLen)
  64. {
  65. break;
  66. }
  67. GetNext(suffix);
  68. len = compare(suffix, s);
  69. if( len > maxLen)
  70. {
  71. maxPal = suffix.substring(0, len);
  72. maxLen = len;
  73. }
  74. }
  75. return maxPal;
  76. }
  77. }



 


思路3. 思路来源于此

http://www.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html

不过原文的陈述仔细研究了一下,有一些地方让人着实费解,所以自己决定重写一遍。

这里描述了一个叫Manacher’s Algorithm的算法。

算法首先将输入字符串S, 转换成一个特殊字符串T,转换的原则就是将S的开头结尾以及每两个相邻的字符之间加入一个特殊的字符,例如#

例如: S = “abaaba”, T = “#a#b#a#a#b#a#”.

为了找到最长的回文字串,例如我们当前考虑以Ti为回文串中间的元素,如果要找到最长回文字串,我们要从当前的Ti扩展使得 Ti-d … Ti+d 组成最长回文字串. 这里 d 其实和 以Ti为中心的回文串长度是一样的. 进一步解释就是说,因为我们这里插入了 # 符号,对于一个长度为偶数的回文串,他应该是以#做为中心的,然后向两边扩,对于长度是奇数的回文串,它应该是以一个普通字符作为中心的。通过使用#,我们将无论是奇数还是偶数的回文串,都变成了一个以Ti为中心,d为半径两个方向扩展的问题。并且d就是回文串的长度。

例如 #a#b#a#, P = 0103010, 对于b而言P的值是3,是最左边的#,也是延伸的最左边。这个值和当前的回文串是一致的。

如果我们求出所有的P值,那么显然我们要的回文串,就是以最大P值为中心的回文串。

T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0

例如上面的例子,最长回文是 “abaaba”, P6 = 6.

根据观察发现,如果我们在一个位置例如 abaaba的中间位置,用一个竖线分开,两侧的P值是对称的。当然这个性质不是在任何时候都会成立,接下来就是分析如何利用这个性质,使得我们可以少算很多P的值。

下面的例子 S = “babcbabcbaccba” 存在更多的折叠回文字串。


C表示当前的回文中心,L和R处的线表示以C为中心可以到达的最左和最右位置,如果知道这些,我们如何可以更好的计算C后面的P[i].
假设我们当前计算的是 i = 13, 根据对称性,我们知道对称的那个下标 i' = 9.

根据C对称的原则,我们很容易得到如下数据  P[ 12 ] = P[ 10 ] = 0, P[ 13 ] = P[ 9 ] = 1, P[ 14 ] = P[ 8 ] = 0).

Now we are at index i = 15, and its mirrored index around C is i’ = 7. Is P[ 15 ] = P[ 7 ] = 7?

当时当i = 15的时候,却只能得到回文 “a#b#c#b#a”, 长度是5, 而对称 i ' = 7 的长度是7.


如上图所示,如果以 i, i' 为中心,画出对称的区域如图,其中以i‘ = 7 对称的区域是 实心绿色 + 虚绿色 和 左侧,虚绿色表示当前的对称长度已经超过之前的对称中心C。而之前的P对称性质成立的原因是 i 右侧剩余的长度 R - i 正好比 以 i‘ 为中心的回文小。
这个性质可以这样归纳,对于 i 而言,因为根据C对称的最右是R,所以i的右侧有 R - i 个元素是保证是 i' 左侧是对称的。 而对于 i' 而言他的P值,也就是回文串的长度,可能会比 R-i 要大。 如果大于 R - i, 对于i而言,我们只能暂时的先填写 P[i] = R - i, 然后依据回文的属性来扩充P[i] 的值; 如果P[i '] 小于R-i,那么说明在对称区间C内,i的回文串长度和i' 是一样长的。例如我们的例子中 i = 15, 因为R = 20,所以i右侧 在对称区间剩余的是 R - 15 = 5, 而 i’ = 7 的长度是7. 说明 i' 的回文长度已经超出对称区间。我们只能使得P[i] 赋值为5, 然后尝试扩充P[i].
if  P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ]
else P[ i ] ≥ R – i. (这里下一步操作是扩充 P[ i ].

扩充P[i] 之后,我们还要做一件事情是更新 R 和 C, 如果当前对称中心的最右延伸大于R,我们就更新C和R。在迭代的过程中,我们试探i的时候,如果P[i'] <= R - i, 那么只要做一件事情。 如果不成立我们对当前P[i] 做扩展,因为最大长度是n,扩展最多就做n次,所以最多做2*n。 所以最后算法复杂度是 O(n)

或许贴上代码更容易一些。直接使用大神的代码了,虽然自己也实现了,不过是理解大神的思路实现的。

[cpp]   view plain copy print ?
  1. // Transform S into T.
  2. // For example, S = "abba", T = "^#a#b#b#a#$".
  3. // ^ and $ signs are sentinels appended to each end to avoid bounds checking
  4. string preProcess(string s) {
  5. int n = s.length();
  6. if (n == 0) return "^$";
  7. string ret = "^";
  8. for (int i = 0; i < n; i++)
  9. ret += "#" + s.substr(i, 1);
  10. ret += "#$";
  11. return ret;
  12. }
  13. string longestPalindrome(string s) {
  14. string T = preProcess(s);
  15. int n = T.length();
  16. int *P = new int[n];
  17. int C = 0, R = 0;
  18. for (int i = 1; i < n-1; i++) {
  19. int i_mirror = 2*C-i; // equals to i' = C - (i-C)
  20. P[i] = (R > i) ? min(R-i, P[i_mirror]) : 0;
  21. // Attempt to expand palindrome centered at i
  22. while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
  23. P[i]++;
  24. // If palindrome centered at i expand past R,
  25. // adjust center based on expanded palindrome.
  26. if (i + P[i] > R) {//这里是取R而不是C最大,尽可能运用最大的对称范围
  27. C = i;
  28. R = i + P[i];
  29. }
  30. }
  31. // Find the maximum element in P.
  32. int maxLen = 0;
  33. int centerIndex = 0;
  34. for (int i = 1; i < n-1; i++) {
  35. if (P[i] > maxLen) {
  36. maxLen = P[i];
  37. centerIndex = i;
  38. }
  39. }
  40. delete[] P;
  41. return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
  42. }  


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值