计算机硬件运作总结
二进制表示图列 (Binary)——缩写为B :
00
01
10
11
法则除2取余倒进制
二进制作用:
首先计算机在计算时只认两种状态,高电平为:"1",低电平为"0".所以计算机工作时用的是二进制,只有把其它进制数转为二进制计算机才能工作,并且最大位数一定,以下用8位定点数为例
计算机本身只能作加法,在作减乘除时,都需变成加法作,所以需要原码、反码,补码
8位定点数为例:首位是符号位,正数为0,负数为1
正数的原码、反码,补码是一样的
负数的反码是除符号位外每位对应取反
负数的补码是反码加1
举个作八位定点数减法的例子(原码加补码):2-1
先将-1变为补码----10000001变为反码----11111110变为补码11111111
2的原码、反码,补码是一样的为00000010
00000010+11111111=00000001---变为十进制为1
另外还有浮点数的变法,我就不多说了,需要自己看书学习,别人只能说个大概
学后的作用通过上面的解答我就不多说了,总之,二进制是计算机最基本的东西
十进制(Decimial——D)我们日常生活经常用,也为我们大家所熟悉,并且也已掌握。在这里就不赘述了。
二进制数转换成十进制数
例:(10011)2=1*24+0*23+0*22+1*21+1*20=16+2+1=(19)10
十六进制表示图列( Hexzdecimal)——缩写为H :
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F
十六进制作用:
1、计算机使用二进制,实际很多情况直接用二进制进行描述是不方便的,理解和交流都费劲,用十进制描述虽然最好接受,但十进制符合了我们人的习惯,却很难与计算机结构直接关联,因为十六进制数与二进制数之间的四位对应一位的特殊关系,十六进制在有一定计算机专业知识的人来说,描述有些内容,如IP地址、代码等信息时,更方便更有利于结合计算机硬件结构来进行理解。所以引入十六进制作为过渡,就能较好地解决人与计算机之间的沟通问题。
2、十六进制作为计算机领域一种重要的数制,对计算机理论的描述,计算机硬件电路的设计都是很有益的。比如逻辑电路设计中,即要考虑功能的完备,好要考虑用尽可能少的硬件,十六进制就能起到一些理论分析的作用。比如四位二进制电路,最多就是十六种状态,也就是一种十六进制形式,只有这十六种状态都被用上了或者尽可能多的被用上,硬件资源才发挥了尽可能大的作用。
应该还有一些理由,自己在应用中去感受吧。
十六进制数转换成十进制数
例:(32CF)16=3*163+2*162+12*161+15*160=12228+512+192+15=(13007)10
八进制表示图例(Octonary)——缩写为O:
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7
八进制作用:
计算机内用得最多的是二进制和十六进制,八进制只要有所了解就可以了(知道怎么与其他进制转换),实际用得很少。
米老师课上举例:
ABC 十六进制表示
1010、1011、 1100
八进制表示
101、010、111、100
5 2 7 4
十进制表示
22+23+24+25+27+29+211
=4+8+16+32+128+512+2048
=2748
二进制表示:
10、10、10、11、11、00
老师说如果一个学生能懂了,二进制、八进制、十进制、十六进制。你就为计算机学习打下了坚固的基础,你就能明白了计算机是怎样工作的,难道你的计算机问题还是问题吗!
今天我一天的功课,就是在全力以赴的写这篇博客总结,找最全的资料,为了加深记忆,所有的点滴都是自己一下一下的敲出来的。其实有的地方可以偷懒,可以省事,但涉及到基础知识,必须的认认真真的做,我明白现在偷懒从网上荡,将来是要吃大亏的。现在不努力,将来后悔莫及,我想现在亡羊补牢,还是为时未晚的。
这是自己技术博客的处子作!望大家支持一下!如有不足请您赐教。