Tensorflow
文章平均质量分 71
xjcoolice
这个作者很懒,什么都没留下…
展开
-
神经网络模型量化
量化模型(Quantized Model)是一种模型加速(Model Acceleration)方法的总称,包括二值化网络(Binary Network)、三值化网络(Ternary Network),深度压缩(Deep Compression)等, 又可以细分为对称量化、非对称量化。1、量化的原因模型量化是由模型、量化两个词组成。我们要准确理解模型量化,要看这两个词分别是什么意思。在计算机视觉、深度学习的语境下,模型特指卷积神经网络,用于提取图像/视频视觉特征。量化是指将信号的连续取值近似为有.原创 2021-11-07 22:23:39 · 1887 阅读 · 1 评论 -
RNN和LSTM的原理
1、RNN和传统全连接神经网络的区别RNN网络在传统全连接神经网络的基础上,新增上一个状态作为输入,展开结构如下:尤其需要注意的是RNN输入间共享了一套参数(U,W,b) ,这也导致了梯度爆炸和梯度消失的原因,其次缺乏重点,引入attention机制。2、LSTM的结构LSTM在RNN的基础上引入了,遗忘门f、输入门i和输出门o 内部记忆单元c, 单独具有单元的(W,U,b)遗忘门:控制上一状态的遗忘程度输入门:控制当前输入的更新程度内部记忆单元: 上一轮记忆和当前候选记忆 c_t原创 2021-10-13 16:50:04 · 481 阅读 · 0 评论 -
tf量化踩坑记录
TF 踩坑记录在调试TF过程种遇到很多奇怪的bug,分别记录原因和解决方案。最重要的解决方案:1、冷静 2、debug 3、问题排除训练时is_training=True 验证时is_training=False ,不设置的话,验证过程种参数会发生变化,例如BN的mean和var是统计的均值。1) 训练过程不收敛或者收敛很慢a) 检查训练数据是否解析正常b) 检查网络结构是否正常,例如是否存在重复使用softmaxc) loss 设计是否正确d) BN层以及训练参数是否可训练,检查输入的参原创 2021-09-17 19:00:51 · 858 阅读 · 0 评论 -
Tensorflow的矩阵和向量表示
tensorflow的表示类似于numpy,习惯python的表达,容易将向量和矩阵弄混,记录下两者区别case1: 对于numpy矩阵:numpy和tensor的表达如下:A = np.array([[1,-1,2], [3,2,0]])A_tf = tf.constan([[1,-1,2], [3,2,0]])注意是两对中括号,少了一对则是向量case2: 单列的数组,构建方法numpy和tensor的表达如下:A = np.array([[2], [1], [3]])A_t.原创 2020-10-26 21:23:13 · 553 阅读 · 0 评论