堆排序(最小堆)--【算法导论】

原创 2014年01月08日 21:39:06

堆排序的思想在堆排序(最大堆)已做说明,故不再赘述;

总之,思想就是首先进行建堆,由于这是最小堆,故而必须保证父节点都小于孩子节点,若不满足条件,则进行调节;

最后进行堆排序,不断将最小的提取出来,并对剩下的进行调节,使之满足最小堆

故而将最大堆中的判断父节点与孩子大小部分改变即可:

    if (left <= length && A[largest] > A[left])  //左孩子比父节点小
    {
        largest = left;
    }

    if (right <= length && A[largest] > A[right])  //右孩子最小
    {
        largest = right;
    }

这样,就将最大堆改为最小堆了...

完整代码:

#include <iostream>
#include <cstdlib>

using namespace std;

void MinHeapIfy(int A[], int length, int i)  //维护
{
    int left = i * 2 + 1;  //节点i的左孩子
    int right = left + 1; //节点i的右孩子节点
    int largest = i;  //默认父节点

    if (left <= length && A[largest] > A[left])  //左孩子比父节点小
    {
        largest = left;
    }

    if (right <= length && A[largest] > A[right])  //右孩子最小
    {
        largest = right;
    }

    if (i != largest)   //最小值不是父节点
    {
        int temp = A[largest]; //exchange
        A[largest] = A[i];
        A[i] = temp;

        MinHeapIfy(A, length, largest);  //继续维护
    }
}

void BuildMinHeap(int A[], int length)  //建堆
{
    for (int i = (length - 1) / 2; i >= 0; i--)
    {
        MinHeapIfy(A, length, i);
    }
}

void HeapSort(int A[], int length)  //堆排
{
    int temp;

    BuildMinHeap(A, length);      //建堆

    cout<<"建堆情况:";  //
    for(int i = 0; i <= length; i++)
        cout<<A[i]<<"  ";
    cout<<endl;

    for(int i = length; i >= 1;)  //最后一个肯定是最小的
    {
        temp = A[i];    //交换堆的第一个元素和堆的最后一个元素
        A[i] = A[0];
        A[0] = temp;
        i--;        //堆的大小减一
        MinHeapIfy(A, i, 0);  //调堆
    }
}

int main()
{
    int A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7};
    /*int* A = new int[1000];
    A[0] = 0;
    for(int i = 1; i < 1000; i++)
        A[i] = rand()%10000 + 1;*/

    int length = sizeof(A) / sizeof(int); //
    //int length = 1000;
    HeapSort(A, length - 1);

    cout<<"排序结果:";
    for(int i = 0; i < length; i++)  //cout
        cout<<A[i]<<"  ";
    cout<<endl;

    return 0;
}

 

o(∩_∩)o

数据结构JAVA版2017教学视频课程

-
  • 1970年01月01日 08:00

【数据结构与算法】最小堆 minheap

最小堆与最大堆实现思路一样,只不过顺序不同,这里只记录最小堆。 最小堆的定义是,一棵完全二叉树,每一个节点都大于等于其父节点。完全二叉树是叶子都在最后一层,且尽量靠左。 实现方面可以使用链表或者数...
  • u010900754
  • u010900754
  • 2017-02-01 06:53:56
  • 2771

最小堆和最小堆排序

1、原理介绍:百度百科 2、最小堆的构造和添加#include #define N 9 // 最小堆得元素个数int minHeap[N]; // 存放最小堆的数组 int index1 = 0;...
  • sddxqlrjxr
  • sddxqlrjxr
  • 2016-04-13 14:28:10
  • 4816

最小堆最大堆算法JAVA

最小堆又叫小顶堆,小顶堆是一棵完全二叉树,满足小顶堆的条件是每个孩子节点的值都大于父节点。大顶堆则相反。 /** * 最小堆 * @author dwl * */ public cl...
  • DWL0208
  • DWL0208
  • 2017-09-11 21:38:34
  • 1089

最详细的最小堆构建、插入、删除的过程图解

转载:http://blog.csdn.net/hrn1216/article/details/51465270 1.简介        最小堆是一棵完全二叉树,非叶子结点的值不大...
  • u011068702
  • u011068702
  • 2016-09-30 17:22:09
  • 10035

堆树(最大堆、最小堆)详解

一、堆树的定义 堆树的定义如下: (1)堆树是一颗完全二叉树; (2)堆树中某个节点的值总是不大于或不小于其孩子节点的值; (3)堆树中每个节点的子树都是堆树。 当父节点的键值总是大于或等于任何一个...
  • guoweimelon
  • guoweimelon
  • 2016-03-16 13:30:58
  • 7803

【算法】堆,最大堆(大顶堆)及最小堆(小顶堆)的实现

此坑待埋。 点击打开漫谈经典排序算法:一、从简单选择排序到堆排序的深度解析链接 白话经典算法系列之七 堆与堆排序 二叉排序树与二叉堆 下面来说一说具体算法。...
  • cdnight
  • cdnight
  • 2013-09-13 16:36:35
  • 58087

最大堆与最小堆的实现

最近算法课作业是最小堆,于是便顺便写了这个代码 最(大)小堆的性质: (1)是一颗完全二叉树,遵循完全二叉树的所有性质。 (2)父节点的键值(大于)小于等于子节点的键值 (3)在堆排序中我们通...
  • enjoy5512
  • enjoy5512
  • 2016-03-30 20:57:36
  • 1785

最小堆的数组实现

#include using namespace std; #define Maxn 1010 class heapClass { private: int heap[Maxn],len; pub...
  • xiaofang3a
  • xiaofang3a
  • 2016-12-25 13:58:22
  • 745

《算法导论》读书笔记--堆排序

预备知识: 堆通常被看做一个近似完全的二叉树,使用数组A[1...N]表示堆,数组中一个元素代表堆上一个结点,堆存在以下性质: 根节点:A[1] 父结点:Parent[i] = i/2 左子节点:Le...
  • u010188674
  • u010188674
  • 2016-01-08 16:35:10
  • 421
收藏助手
不良信息举报
您举报文章:堆排序(最小堆)--【算法导论】
举报原因:
原因补充:

(最多只允许输入30个字)