[BZOJ1086][SCOI2005]王室联邦

Description

既有n个点,有n-1条边,将n个点划分成若干个总数不超过b的区域。每个区域有一个属于该区域的根,根不一定属于该区域,但要求该区域所有的点到根的路径上的点都属于该区域。

Sample Input

8 2
1 2
2 3
1 8
8 7
8 6
4 6
6 5

Sample Output

one
3
2 1 1 3 3 3 3 2
2 1 8
two
3
3 3 3 1 1 2 2 3
6 8 1

用我的方法Output为two。


既然题目要求要求该区域所有的点到根的路径上的点都属于该区域。很明显,就是一棵树,所以题意其实就是把一棵多叉树分成若干个区域,然而又不用输出最小方案,所以弱爆了。这个玩意我也不知道它算什么,应该属于dfs的范畴吧。
一种简单粗暴的想法就是dfs,每找到B个就分一块,但是这样连通性不能保证(一颗子树的下半截和另一棵子树的上半截组成一块)。所以我们就想:能不能从底部往上组块,每棵子树较深的部分自己成块,然后靠近根的部分组成一个大块。
所以我们这么做:对于一个点x,以初次访问它时,栈的栈顶作为相对栈底,每遍历完它的一个子节点所在的子树,判断此时栈顶-相对栈底得到的元素个数是否大于或等于b,若成立,那么弹栈至相对栈顶。当访问完所有子节点要回溯到x的父节点时,把x压入栈。
这样就可以保证连通性和块大小不会超了,最后dfs结束后肯定还会有剩余的未组成块的节点,把它们归到最后一个块就可以了。

附代码:

#include<cstdio>
#include<cstring>
using namespace std;
struct node
{
    int x,y,next;
}a[2100];int len,last[1100];
void ins(int x,int y)
{
    len++;
    a[len].x=x;a[len].y=y;
    a[len].next=last[x];last[x]=len;
}
int sta[1100],top;
int belong[1100],tot;
int rt[1100],n,b;
void dfs(int fa,int x)
{
    int now=top;
    for(int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(y!=fa)
        {
            dfs(x,y);
            if(top-now>=b)
            {
                rt[++tot]=x;
                while(top!=now)belong[sta[top--]]=tot;
            }
        }
    }
    sta[++top]=x;
}
int main()
{ 
    len=0;memset(last,0,sizeof(last));
    scanf("%d%d",&n,&b);
    if(n<b){printf("0\n");return 0;}
    for(int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        ins(x,y);ins(y,x);
    }
    dfs(0,1);
    while(top)belong[sta[top--]]=tot;
    printf("%d\n",tot);
    for(int i=1;i<=n;i++)printf("%d ",belong[i]);
    printf("\n");
    for(int i=1;i<=tot;i++)printf("%d ",rt[i]);
    printf("\n");
    return 0;
}

转载至:xgc_woker

阅读更多
文章标签: dfs
个人分类: BZOJ SCOI
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

[BZOJ1086][SCOI2005]王室联邦

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭