算法
Lucky_Xue
这个作者很懒,什么都没留下…
展开
-
MATLAB模拟退火算法模板
模拟退火用于处理最优化问题,可以求出当目标函数取得最小值时的决策变量的值。在编写程序时需要根据具体问题设计算法,算法描述为:(1)解空间(初始解)(2)目标函数(3)新解的产生① 2 变换法② 3 变换法(4)代价函数差(5)接受准则(6)降温(7)结束条件下面MATLAB程序用于求解非线性规划:min f(x)=x1^2+x2^2+8st.x1^2-x2>=0-x1-x2^2+2=0x1,...转载 2018-03-30 19:47:32 · 8654 阅读 · 3 评论 -
模拟退火SA
matlab练习程序(模拟退火SA)模拟退火首先从某个初始候选解开始,当温度大于0时执行循环。在循环中,通过随机扰动产生一个新的解,然后求得新解和原解之间的能量差,如果差小于0,则采用新解作为当前解。如果差大于0,则采用一个当前温度与能量差成比例的概率来选择是否接受新解。温度越低,接受的概率越小,差值越大,同样接受概率越小。是否接受的概率用此公式计算:p=exp(-ΔE/T)。这里ΔE为新解与原解...转载 2018-03-30 20:32:48 · 289 阅读 · 0 评论 -
Matlab全局优化与局部优化
在实际的工作和生活过程中,优化问题无处不在,比如资源如何分配效益最高,拟合问题,最小最大值问题等等。优化问题一般分为局部最优和全局最优,局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。函数局部最小点是那种它的函数值小于或等于附近点的点。但是有可能大于较远距离的点。全局最小点是那种它的函数值小于或等于所有的可行点。matlab中的提供的传统优化...转载 2018-04-01 10:15:51 · 9532 阅读 · 0 评论