#打卡记录
dfs -----> 为了实现dfs遍历树,需要使用栈这种数据结构作为辅助,将当前节点入栈,处理栈中节点,将该节点左右孩子入栈。由于栈的先进后出的特性,能保证是一直处理一边的孩子,再处理另一边的孩子,这就和深度优先搜索的思想是吻合的,所以采用栈作为辅助结构来实现dfs的树的遍历。我暂且先记作是深度优先搜索的一种实现方式。
bfs -----> 为了实现bfs遍历树,使用队列这种数据结构作为辅助,将当前节点入队列,处理栈中节点,将该节点左右孩子入栈。由于队列的先进先出的特性,在处理节点的顺序上,看起来就是一层一层在处理,这就和深度优先搜索的思想是吻合的,所以采用队列作为辅助结构来实现bfs的树的遍历。我暂且先记作是广度优先搜索的一种实现方式。
下图是层序遍历的代码框架:
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size();
vector<int> vec;
// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
};
226.翻转二叉树
这道题理解为:遍历二叉树中的所有节点,并交换节点的左右子树。这样能更清晰的解题。
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == nullptr) {
return nullptr;
}
invertTree(root->left);
invertTree(root->right);
swap(root->left, root->right);
return root;
}
};
采用中序遍历的话需要注意,这里的交换子树的操作是改变了root这棵树本身结构的,所以在遍历另一侧的时候其实已经把交换完成的子树交换到另一侧了。需要写成以下形式
invertTree(root->left); // 左
swap(root->left, root->right); // 中
invertTree(root->left);
101. 对称二叉树
这题其实需要注意的是看待树的方式,平时是按照左右来看的,判断是否对称时需要以内侧外侧来看待。我们需要判断的是右子树和左子树的外侧的节点是否相等,内侧是否相等。所以队列中加入的节点的顺序是外侧:左的左,右的右;内侧:左的右,右的左。
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
queue<TreeNode*> que;
que.push(root->left); // 将左子树头结点加入队列
que.push(root->right); // 将右子树头结点加入队列
while (!que.empty()) { // 接下来就要判断这两个树是否相互翻转
TreeNode* leftNode = que.front(); que.pop();
TreeNode* rightNode = que.front(); que.pop();
if (!leftNode && !rightNode) { // 左节点为空、右节点为空,此时说明是对称的
continue;
}
// 左右一个节点不为空,或者都不为空但数值不相同,返回false
if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
return false;
}
que.push(leftNode->left); // 加入左节点左孩子
que.push(rightNode->right); // 加入右节点右孩子
que.push(leftNode->right); // 加入左节点右孩子
que.push(rightNode->left); // 加入右节点左孩子
}
return true;
}
};