- 博客(247)
- 资源 (10)
- 问答 (5)
- 收藏
- 关注
原创 证明arcsinx+arccosx=π/2,并且为什么arcsinx-arccosx=π/2不成立
为了弄清原因,我们结合反三角函数的定义域、值域和图像来进行分析。但我们说这样不成立,为什么?那如何推出正确的结论呢?因此在上述推导过程中,
2023-08-28 23:47:26
80
原创 高等数学上册 第十章 重积分 第十一章 曲线积分与曲面积分 知识点总结
二重积分计算法:直角坐标下:化为二次积分如果图形是XY型,则都可以,但要考虑哪个计算不定积分方便如果图形既不是X也不是Y型,则要拆分极坐标下:∬fxydxdy∬fρcosθρsinθρdρdθ三重积分计算法:利用直角坐标、利用柱面坐标。
2023-08-27 15:21:36
98
原创 专题:曲面的切平面、法线
如果一个向量与任意切线都垂直的话,那这些任意切线必定在一个平面内,表达的是曲线的切向量,这个平面就叫做曲面在点。假设曲面方程为隐函数。因此上式表达的是向量。
2023-08-27 12:18:34
703
原创 高等数学上册 第九章 多元函数微分法及其应用 知识点总结
1)多元函数的极限:用ε−δ语言描述,二元函数的极限叫二重极限二重极限存在:⎩⎨⎧1Pxy一定要以任何方式趋于x0y0时,fxy无限趋近于A2、如果以某一特殊方式(如沿一条定直线或曲线),则不能判定极限存在3、如果Pxy以不同方式趋于x0y0时,fxy趋于不同的值,则极限不存在2)多元函数的连续性:如果xy→x0y0limfxyfx0y0。
2023-08-20 09:04:07
97
原创 高等数学上册 第八章 向量代数与空间解析几何 知识点总结
曲面方程Fxyz0,曲面上任一点满足该方程,不在曲面上的点不满足该方程曲线方程:Fxyz0Gxyz0即曲线可以看错是两个曲面的交线平面点法式方程:原理:过空间一点可以作且只能作一平面垂直于一已知直线平面的法线向量:垂直该平面设法线向量nABC,已知点M0x0y0z0,由nM0得到点法式方程为Ax−x0By−y0Cz−z00平面的一般方程:AxByC。
2023-08-13 19:06:04
118
原创 高等数学上册 第七章 微分方程 知识点总结
如果微分方程的解中含有任意常数,则任意常数的个数与微分方程的阶数相同,这样的解叫微分方程的通解。当有了初值条件并确定了通解中的任意常数之后,得到的就是微分方程的特解。微分方程的解的图形是一条曲线,叫做微分方程的积分曲线。微分方程中所出现的未知函数的最高阶导数的阶数。求微分方程满足初值条件的特解的问题。必须出现,其它可以不出现。函数及其导数的关系式。)微分方程的积分曲线。
2023-08-07 09:02:29
129
原创 如何推导椭圆的参数方程
椭圆定义:椭圆上任意一点到两焦点的距离之和为2a如何由椭圆定义推出椭圆标准方程呢?如上图所示。由定义可得已知条件为∣MC1∣∣MC2∣2a当M落在顶点P上时,可得另一已知条件a2−b2c2当有了已知条件之后,可以通过RT△MC1D和MC2D写出如下等式:xc2y2x−c2y22a该式可通过两边平方消除根式,且化简过程中要用a2−b2代替c2该式化简有一定计算量,在此不写出详细步骤。
2023-08-06 10:32:44
214
原创 高等数学上册 第五章 定积分 知识点总结
定积分的性质:1∫abαfxβgx)]dxα∫abfxdxβ∫abgxdx2)设acb,则∫abfxdx∫acfxdx∫cbfxdx3)在ab上fx≡1,则∫abfxdxb−a4)在ab上fx≥0,则∫abfxdx≥05)设m和M分别在fx在ab。
2023-08-05 21:00:21
166
原创 高等数学上册 第二章 导数与微分 知识点总结
函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件。导函数:某一区间内所有点都可导,其导数值构成的新的函数。单侧导数:可导的充要条件是左导数和右导数都存在且相等。导数概念:极限存在=>可导,极限就是导数。)反函数的导数等于直接函数导数的倒数。有导数,则它们的和差积商也有倒数。
2023-07-02 22:04:52
164
原创 高等数学上册 第一章 函数与极限 知识点总结
高等数学核心内容:微积分微积分:微分(导数)+积分上册:一元微积分下册:多元微积分微积分主要研究事物运动中的数量变化规律。微积分主要研究对象:函数y=f(x)的变化规律。导数和积分分别是处理均匀量的商和积在处理非均匀量中的发展。发展的规律:极限思想。初等数学:常量,具体的。高等数学:变量,抽象的。
2023-07-02 00:30:40
252
原创 如何用三角函数公式算三角形面积
对于任意△ABCS△ABCBC⋅AD⋅21ADABsinbACsinc因此S△ABCBC⋅AB⋅sinb⋅21BC⋅AC⋅sinc⋅21同理可得S△ABCAB⋅AC⋅sina⋅21由此可见,S△ABC两邻边的积⋅夹角正弦值⋅21。
2023-06-24 13:38:04
76
原创 利用正弦定理证明两角和差公式
另外,其它的两角和差公式,都可以用三角函数奇偶性、诱导公式等推导出来,无需再用正弦定理证明一遍。首先用正弦定理,证明sin(A+B)=sinAcosB+cosAsinB。
2023-06-24 13:02:48
62
原创 圆的基本性质
圆心角:以圆心为顶点的角,另外两点在圆上。性质1:同弧所对的圆心角是圆周角的两倍。圆周角:顶点在圆上,另外两点在圆上。性质2:圆内接四边形对角互补。弦:圆上任意两点的连线。
2023-06-15 23:05:58
125
原创 Spring Boot集成WebSocket Demo,简单明了
如果是初次搭建Spring Boot+WebSocket项目,不需要太复杂,只需要快速上手,那么你搜到的大部分文章可能都不适合你,我的这篇文章以最精简的方式搭建一个可以运行并通信的Spring Boot+WebSocket的Demo项目,有了根基之后再进行复杂化就不是难事了。
2023-06-08 16:17:24
1885
1
原创 软考软件设计师真题与答案解析
1、某计算机系统的CPU主频为2.8GHz。某应用程序包括3类指令,各类指令的CPI(执行每条指令所需要的时钟周期数)及指令比例如’下表所示。执行该应用程序时的平均CPI为( );运算速度用MIPS表示,约为( )。答案是CB机器字长:CPU一次能处理数据的位数,与CPU寄存器的位数有关CPU主频(时钟频率,单位是HZ,GHZ):CPU内数字脉冲信号的振动频率,脉冲信号的作用(指挥CPU内部所有的部件一步一步工作的一个节奏)
2023-05-18 18:59:51
634
原创 软件设计师考试大纲
文章目录1、考试要求2、考试范围1、科目1:计算机与软件工程知识(考试时间150分钟)1、计算机系统基础知识1、计算机内数据的表示及运算2、其他数学基础知识3、计算机硬件基础知识4、计算机软件知识5、计算机网络知识6、多媒体基础知识2、系统开发和运行知识1、软件工程基础知识2、系统分析基础知识3、系统设计基础知识4、软件测试基础知识5、系统运行和维护基础知识6、软件质量管理基础知识3、面向对象基础知识4、网络与信息安全基础知识5、标准化、信息化和知识产权基础知识1、标准化基础知识2、信息化基础知识3、知识产
2023-05-13 15:57:38
758
原创 Maven mirrorOf标签的理解
是一种特殊的远程Maven仓库,它是架设在局域网内的仓库服务,私服一般被配置为互联网远程仓库的镜像,供局域网内的Maven用户使用。当Maven需要下载构件的时候,先向私服请求,如果私服上不存在该构件,则从外部的远程仓库下载,同时缓存在私服之上,然后为Maven下载请求提供下载服务,另外,对于自定义或第三方的jar可以从本地上传到私服,供局域网内其他maven用户使用。Maven必须要知道至少一个可用的远程仓库,中央仓库就是这样一个默认的远程仓库,Maven 默认有一个 super pom 文件。
2023-01-26 16:35:21
1489
原创 NAT模式虚拟机能ping通宿主机但是telnet不通 教你如何设置网关走出误区
因为我们是想让虚拟机能连通宿主机上的服务,改造之后,我们就不telnet 192.168.137.1网关IP了,而是telnet 192.168.137.2宿主机的IP,这个是可以telnet的。上面的网络拓扑图,是将网关和宿主机的IP地址设置成了同一个,因此在telnet的时候,其实是telnet网关的端口,而网关仅用于路由,因此telnet就会失败。如标题所言,我一开始在设置网关的时候一直存在着误区,而这个误区也导致标题中的问题:虚拟机能ping通宿主机,但是telnet不通,这就很奇葩了。
2023-01-10 22:39:36
2298
原创 Spring Security认证授权练手小项目 腾讯视频VIP权限管理功能
主框架为Spring Boot+Spring Security+Mybatis+Spring Session。关系型数据库采用Mysql。使用Redis主要存储分布式Session数据。使用kaptcha生成图形验证码。另外使用了lombok、fastjson、hutool等工具。通过mybatis-generator自动生成数据库映射文件。前端主要使用html+jquery框架,请求使用jquery ajax。
2022-12-31 21:39:02
734
原创 Spring Boot三种跨域解决方案与Spring Security跨域解决方案
JavaWeb跨域问题及解决方案,另外我下面会做补充。很多人误认为资源跨域时无法请求,实际上,通常情况下请求是可以正常发起的(注意,部分浏览器存在特例),后端也正常进行了处理,只是在返回时被浏览器拦截,导致响应内容不可使用。此外,我们平常所说的跨域实际上都是在讨论浏览器行为。CORS(Cross-Origin Resource Sharing)的规范中有一组新增的HTTP首部字段,允许服务器声明其提供的资源允许哪些站点跨域使用。
2022-12-29 10:12:23
1682
3
原创 分布式session解决方案 Spring Session与Spring MVC(HttpSession)集成实战
在上一篇文章中,介绍了Java Web的基础知识,以及Spring MVC父子容器初始化过程,有兴趣的读者可以阅读一下,一是作为本文的铺垫,二是本文所用到的项目也可以从上一篇文章获取到。本文由上一篇文章引申出来,我们知道Java Web有个Session的概念,是存在于服务端的一块内存,但如今服务都是集群部署,如何解决集群多个节点间session不共享的问题呢?session共享这种方案实用得多,也是现在最常用的方案。
2022-12-28 16:40:28
1371
6
原创 深入底层,spring mvc父子容器初始化过程解析
以下是对各个组件主要职责的总结:根据RootConfig创建了一个上下文:RootApplicationContext向ServletContext注册了ContextLoaderListener,传入了RootApplicationContext根据ServletConfig创建了一个上下文:ServletApplicationContext向ServletContext注册了DispatcherServlet,传入了ServletApplicationContext。
2022-12-20 18:35:06
1439
原创 fastjson序列化保留对象类型信息
一般的json框架在序列化对象时,会序列化对象的实例属性,而反序列化时,通常需要指定Class对象才能反序列化为原来的类型,但有时候我们无法手动指定Class对象,比如将一些自定义对象写入redis时,然后再从redis查的时候,就不能反序列化为某个具体写死的类型。因此,我调研了一下fastjson框架,发现它可以在序列化时保留对象类型信息,然后在反序列化时根据json字符串中的类型信息自动生成对象,用法很简单,只需要WriteClassName和SupportAutoType结合使用即可。
2022-12-19 19:02:41
580
原创 项目接入腾讯云短信服务SMS实现向用户发送手机验证码
早在18年的时候,我就在项目中使用过阿里云的短信服务,现在我上阿里云短信控制台看,还能看到当时创建的短信签名,如下图所示。出于某种原因,我现在想重新申请一个新的签名,却审批失败了,原因是:意思很明确,就是说你必须要有一个上线的应用(公网能访问的),自己个人学习或者做一些线下项目啊都是申请不到短信签名的,之前18年的时候并没有这么严格。目前有两种方案:第一种方案的话需要花钱,自己又只是个人用户,并没有需要上线的项目,所以这里先去腾讯云看看情况吧。经过自己的一番研究之后,发现腾讯云也一样,需要有上线的项目
2022-12-03 17:54:27
1721
原创 Spring Cloud教程 第十二弹 Spring Cloud Config整合Spring Cloud Bus实现配置动态刷新
中介绍了spring cloud config的基本使用,但是配置无法动态刷新,也就是说如果我更改了git或数据库中的配置,项目必须重新启动才能使新配置生效。Spring Cloud Bus需要引入RabbitMQ或Kafka作为消息传输的媒介。与手动刷新不同,动态刷新的改造主要在config server项目中。
2022-12-01 23:16:59
918
原创 Spring Cloud教程 第十一弹 Spring Cloud Config连接git和数据库
Spring Cloud Config为微服务架构提供了配置管理的功能,通过Spring Cloud Config服务端提供配置中心,在各个微服务应用的客户端读取来自服务端配置中心的配置项,配置中心的数据源可以来自git、svn、数据库、操作系统的本地文件、jar包中的文件、vault、组合。Spring Cloud Config = 微服务配置中心。
2022-12-01 21:50:39
1920
原创 docker centos7容器中文乱码问题解决
如下图所示,往文件里输入内容:测试中文乱码问题,结果发现乱码。甚至如果文件名带有中文也会乱码。执行locale命令,如下所示。执行locale -a(查看系统支持的编码)命令,如下所示。这说明当前环境不支持en_US.UTF-8编码。上面的报错信息意思是,从仓库 ‘appstream’ 下载元数据失败:由于镜像列表中没有 URL,不能准备内部镜像列表。出现该问题的原因是,CentOS 已经停止维护的问题。
2022-11-15 14:58:17
1235
原创 基于servlet3.0搭建spring mvc应用 无web.xml 无spring boot
还记得我刚学Java Web的时候,是17年,那时候servlet和jsp还在延续它的辉煌,ssh和ssm仍然是企业潮流,开发工具还是eclipse,有时候一个Tomcat字符集乱码的问题都要解决很久,老师教我们从servlet,到jsp,再到ssh和ssm,可是学到最后,即使我们的项目能跑了,可再让我们手工搭一遍,根本就摸不着头脑,因为配置太多了,我们搞不清楚原理,搞不清楚为什么要这么配置,自然也就记不住。
2022-11-09 14:09:06
1017
原创 高并发抢红包系统红包随机金额生成算法
算法要求:随机金额列表的金额之和,不能超也不能少,恰好等于总金额M;每个人至少抢到1分钱;所有人抢到金额的几率是相等的,不能有些人抢到金额的几率大,而有些人抢不到红包的几率大;红包随机金额生成算法通常采用二倍均值法,如下是该算法的简介:剩余总金额M/剩余总人数N,将结果*2得到边界值E,然后在(0,E)之间得到一个随机数R,R就是要求的随机金额;将剩余金额进去此时生成的随机金额R,将剩余人数减1;循环执行上述操作,直到剩余人数为0;这里要确保生成的所有随机金额之和
2022-11-04 16:52:09
1154
原创 Spring基于注解配置的AnnotationConfigApplicationContext源码分析
启动AnnotationConfigApplicationContext的main方法如下代码所示。AnnotationConfigApplicationContext的构造器参数如下图所示。这里我们用的是第二个构造器。点进去,如下代码所示。为了整个源码分析的过程有层次感,我将上面三行代码分三个标题去叙述。
2022-10-10 08:30:00
507
原创 dubbo xml配置解析入口源码分析
首先,dubbo是依赖于spring进行配置的,那么,配置dubbo的其中一种方式就是通过spring的applicationContext.xml文件。不过问题是,spring容器启动时,一般只会解析applicationContext.xml中spring自己认识的元素,如bean元素,并将其注册为beanDefinition,那么spring是如何识别dubbo元素的呢?如dubbo:service。
2022-10-08 09:00:00
837
spring mvc项目
2022-12-20
Java Swing+NIO实现的CS模式聊天程序代码
2022-04-17
SQL、Hive SQL等SQL血缘解析工具
2022-01-14
mysql-8.0.18-winx64.rar
2020-04-07
mysql-5.7.27-winx64.rar
2020-04-07
dbvisualizer.rar
2020-03-02
jdk1.8安装包
2019-04-23
jdk1.7安装包
2019-04-23
jdk1.6安装包
2019-04-23
CMD控制台设置UTF-8编码后,输入的中文只占一个字节?
2022-04-29
new TreeSet(Comparator)去重是有bug吗?
2022-04-27
java工程师的核心技能是什么?
2022-04-07
为什么€在GBK编码只占一个字节,而"€".getBytes("GBK")输出两个字节?
2021-12-25
urlConnection.getInputStream()有必要主动Close吗?
2021-12-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人