自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学无止境!

学无止境!

  • 博客(251)
  • 资源 (10)
  • 问答 (5)
  • 收藏
  • 关注

原创 模仿postman自研的HTTP Client Chrome插件,可绕过浏览器同源政策发起跨域请求

带着半信半疑的心态,首先我找到官方文档仔细阅读后,然后按照官方文档上的教程写了一个demo,运行后发现果然可以绕过浏览器同源政策发起跨域请求并自动携带cookie,基于这一核心能力自己也实现了一个模仿postman的HTTP Client chrome插件,既可以满足工作需要,又能提升自己的技术。综上所述,目前还没有一个十全十美的方法,于是我又调研了一下chrome插件(chrome扩展)是否有发起跨域请求的能力。第二步,打开扩展主窗口,输入框中填写请求信息,发起请求。对应的就是该窗口的html文件,

2024-10-06 08:00:00 1688 4

原创 tomcat版本升级导致的umask问题

z用于测试字符串长度,如果为0则为真,因此如果没有设置UMASK变量则默认为0027,如果设置了则可以改变tomcat默认的umask,最后将umask作为系统属性添加到tomcat进程的启动命令行上。,tomcat进程是用root用户启的,服务生成的日志文件也就属于root用户的,而我是以普通用户登录的,由于权限位少了一个。umask设置了一个默认的权限掩码,这个掩码与文件系统的默认权限组合,决定了新创建文件和目录的实际权限。umask只影响新创建的文件和目录的权限,不会改变已存在文件和目录的权限。

2024-09-30 16:24:48 1111

原创 马克思主义基本原理笔记

马克思主义哲学、政治经济学、科学社会主义理论。

2024-01-06 17:21:28 769

原创 slf4j+logback源码加载流程解析

performInitialization()方法表示执行初始化,点进去会调用到LoggerFactory的bind方法,如下代码所示。然后点进去,会走到LoggerFactory的getILoggerFactory方法,如下代码所示。StaticLoggerBinder类加载时会执行初始化,如下代码所示。如上述代码所示,在项目中通常会这样创建一个Logger对象去打印日志。

2023-12-30 17:42:08 950

原创 数学经典例题

但仅此而已,我们不知道具体在哪一点产生最小值,也不知道最小值是多少。的点,但这个函数求导后是一元三次方程,求解十分困难。首先能想到的是,该函数在点。有没有实根,一般做法是配方。利用二重积分和极坐标,令。下面介绍一种简单的做法。且容易知道函数图像是。常规的方法是求导数为。因此可以知道最小值是。

2023-09-22 21:25:35 326

原创 证明arcsinx+arccosx=π/2,并且为什么arcsinx-arccosx=π/2不成立

为了弄清原因,我们结合反三角函数的定义域、值域和图像来进行分析。但我们说这样不成立,为什么?那如何推出正确的结论呢?因此在上述推导过程中,

2023-08-28 23:47:26 906

原创 高等数学上册 第十章 重积分 第十一章 曲线积分与曲面积分 知识点总结

二重积分计算法:直角坐标下:化为二次积分如果图形是XY型,则都可以,但要考虑哪个计算不定积分方便如果图形既不是X也不是Y型,则要拆分​极坐标下:∬fxydxdy∬fρcosθρsinθρdρdθ三重积分计算法:利用直角坐标、利用柱面坐标。

2023-08-27 15:21:36 327

原创 专题:曲面的切平面、法线

如果一个向量与任意切线都垂直的话,那这些任意切线必定在一个平面内,表达的是曲线的切向量,这个平面就叫做曲面在点。假设曲面方程为隐函数。因此上式表达的是向量。

2023-08-27 12:18:34 826

原创 专题:平面、空间直线参数方程下的切线斜率问题

本文研究平面、空间直线在参数方程形式下,切线斜率(即导数)如何表示的问题。处的切线向量可表示为。

2023-08-27 11:45:03 930

原创 高等数学上册 第九章 多元函数微分法及其应用 知识点总结

1)多元函数的极限:用ε−δ语言描述,二元函数的极限叫二重极限二重极限存在:⎩⎨⎧​1Pxy一定要以任何方式趋于x0​y0​时,fxy无限趋近于A2、如果以某一特殊方式(如沿一条定直线或曲线),则不能判定极限存在3、如果Pxy以不同方式趋于x0​y0​时,fxy趋于不同的值,则极限不存在​2)多元函数的连续性:如果xy→x0​y0​lim​fxyfx0​y0​。

2023-08-20 09:04:07 223

原创 高等数学上册 第八章 向量代数与空间解析几何 知识点总结

曲面方程Fxyz0,曲面上任一点满足该方程,不在曲面上的点不满足该方程曲线方程:Fxyz0Gxyz0​即曲线可以看错是两个曲面的交线平面点法式方程:原理:过空间一点可以作且只能作一平面垂直于一已知直线平面的法线向量:垂直该平面设法线向量nABC,已知点M0​x0​y0​z0​,由nM0​得到点法式方程为Ax−x0​By−y0​Cz−z0​0平面的一般方程:AxByC。

2023-08-13 19:06:04 247

原创 高等数学上册 第七章 微分方程 知识点总结

如果微分方程的解中含有任意常数,则任意常数的个数与微分方程的阶数相同,这样的解叫微分方程的通解。当有了初值条件并确定了通解中的任意常数之后,得到的就是微分方程的特解。微分方程的解的图形是一条曲线,叫做微分方程的积分曲线。微分方程中所出现的未知函数的最高阶导数的阶数。求微分方程满足初值条件的特解的问题。必须出现,其它可以不出现。函数及其导数的关系式。)微分方程的积分曲线。

2023-08-07 09:02:29 396

原创 几种常用的曲线

摆线参数方程:xaθ−sinθya1−cosθ​a为圆的半径,因此摆线最高点的y坐标为2a。

2023-08-06 14:13:50 411

原创 如何用定积分推导椭圆面积公式

椭圆在第一象限的面积。

2023-08-06 10:57:47 649

原创 如何推导椭圆的参数方程

椭圆定义:椭圆上任意一点到两焦点的距离之和为2a如何由椭圆定义推出椭圆标准方程呢?如上图所示。由定义可得已知条件为∣MC1∣∣MC2∣2a当M落在顶点P上时,可得另一已知条件a2−b2c2当有了已知条件之后,可以通过RT△MC1D和MC2D写出如下等式:xc2y2​x−c2y2​2a该式可通过两边平方消除根式,且化简过程中要用a2−b2代替c2该式化简有一定计算量,在此不写出详细步骤。

2023-08-06 10:32:44 1635 5

原创 高等数学上册 第六章 定积分的应用 知识点总结

定积分的元素法:如面积元素,为高f(x)与底dx的乘积。

2023-08-06 08:21:49 203

原创 高等数学上册 第五章 定积分 知识点总结

定积分的性质:1∫ab​αfxβgx)]dxα∫ab​fxdxβ∫ab​gxdx2)设acb,则∫ab​fxdx∫ac​fxdx∫cb​fxdx3)在ab上fx≡1,则∫ab​fxdxb−a4)在ab上fx≥0,则∫ab​fxdx≥05)设m和M分别在fx在ab。

2023-08-05 21:00:21 365

原创 高等数学上册 第四章 不定积分 知识点总结

求不定积分的方法:求∫x23x2​dx思路:分子拆解成x22−4x24。

2023-08-02 09:01:41 230

原创 高等数学上册 第三章 微分中值定理与导数的应用 知识点总结

为常数的充分必要条件。

2023-07-12 23:09:18 450

原创 高等数学上册 第二章 导数与微分 知识点总结

函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件。导函数:某一区间内所有点都可导,其导数值构成的新的函数。单侧导数:可导的充要条件是左导数和右导数都存在且相等。导数概念:极限存在=>可导,极限就是导数。)反函数的导数等于直接函数导数的倒数。有导数,则它们的和差积商也有倒数。

2023-07-02 22:04:52 565

原创 高等数学上册 第一章 函数与极限 知识点总结

高等数学核心内容:微积分微积分:微分(导数)+积分上册:一元微积分下册:多元微积分微积分主要研究事物运动中的数量变化规律。微积分主要研究对象:函数y=f(x)的变化规律。导数和积分分别是处理均匀量的商和积在处理非均匀量中的发展。发展的规律:极限思想。初等数学:常量,具体的。高等数学:变量,抽象的。

2023-07-02 00:30:40 1357

原创 初高中数学知识点汇总

的展开式中的常数项是。要使其为常数项,则令。

2023-07-01 18:03:12 331

原创 如何用三角函数公式算三角形面积

对于任意△ABCS△ABC​BC⋅AD⋅21​ADABsinbACsinc因此S△ABC​BC⋅AB⋅sinb⋅21​BC⋅AC⋅sinc⋅21​同理可得S△ABC​AB⋅AC⋅sina⋅21​由此可见,S△ABC​两邻边的积⋅夹角正弦值⋅21​。

2023-06-24 13:38:04 267

原创 利用正弦定理证明两角和差公式

另外,其它的两角和差公式,都可以用三角函数奇偶性、诱导公式等推导出来,无需再用正弦定理证明一遍。首先用正弦定理,证明sin(A+B)=sinAcosB+cosAsinB。

2023-06-24 13:02:48 127

原创 正弦定理推导过程

sinAa​sinBb​sinCc​2R2R是该三角形外接圆的直径。

2023-06-15 23:14:16 455

原创 圆的基本性质

圆心角:以圆心为顶点的角,另外两点在圆上。性质1:同弧所对的圆心角是圆周角的两倍。圆周角:顶点在圆上,另外两点在圆上。性质2:圆内接四边形对角互补。弦:圆上任意两点的连线。

2023-06-15 23:05:58 203

原创 Spring Boot集成WebSocket Demo,简单明了

如果是初次搭建Spring Boot+WebSocket项目,不需要太复杂,只需要快速上手,那么你搜到的大部分文章可能都不适合你,我的这篇文章以最精简的方式搭建一个可以运行并通信的Spring Boot+WebSocket的Demo项目,有了根基之后再进行复杂化就不是难事了。

2023-06-08 16:17:24 2340 1

原创 软件工程领域知识

1、软件生存周期可行性分析与项目开发计划需求分析概要设计详细设计编码测试维护2、软件过程(开发)模型3、系统设计4、测试。

2023-05-22 21:23:19 651

原创 软考软件设计师真题与答案解析

1、某计算机系统的CPU主频为2.8GHz。某应用程序包括3类指令,各类指令的CPI(执行每条指令所需要的时钟周期数)及指令比例如’下表所示。执行该应用程序时的平均CPI为( );运算速度用MIPS表示,约为( )。答案是CB机器字长:CPU一次能处理数据的位数,与CPU寄存器的位数有关CPU主频(时钟频率,单位是HZ,GHZ):CPU内数字脉冲信号的振动频率,脉冲信号的作用(指挥CPU内部所有的部件一步一步工作的一个节奏)

2023-05-18 18:59:51 3853

原创 软件设计师考试大纲

文章目录1、考试要求2、考试范围1、科目1:计算机与软件工程知识(考试时间150分钟)1、计算机系统基础知识1、计算机内数据的表示及运算2、其他数学基础知识3、计算机硬件基础知识4、计算机软件知识5、计算机网络知识6、多媒体基础知识2、系统开发和运行知识1、软件工程基础知识2、系统分析基础知识3、系统设计基础知识4、软件测试基础知识5、系统运行和维护基础知识6、软件质量管理基础知识3、面向对象基础知识4、网络与信息安全基础知识5、标准化、信息化和知识产权基础知识1、标准化基础知识2、信息化基础知识3、知识产

2023-05-13 15:57:38 1961

原创 Maven mirrorOf标签的理解

是一种特殊的远程Maven仓库,它是架设在局域网内的仓库服务,私服一般被配置为互联网远程仓库的镜像,供局域网内的Maven用户使用。当Maven需要下载构件的时候,先向私服请求,如果私服上不存在该构件,则从外部的远程仓库下载,同时缓存在私服之上,然后为Maven下载请求提供下载服务,另外,对于自定义或第三方的jar可以从本地上传到私服,供局域网内其他maven用户使用。Maven必须要知道至少一个可用的远程仓库,中央仓库就是这样一个默认的远程仓库,Maven 默认有一个 super pom 文件。

2023-01-26 16:35:21 2199

原创 NAT模式虚拟机能ping通宿主机但是telnet不通 教你如何设置网关走出误区

因为我们是想让虚拟机能连通宿主机上的服务,改造之后,我们就不telnet 192.168.137.1网关IP了,而是telnet 192.168.137.2宿主机的IP,这个是可以telnet的。上面的网络拓扑图,是将网关和宿主机的IP地址设置成了同一个,因此在telnet的时候,其实是telnet网关的端口,而网关仅用于路由,因此telnet就会失败。如标题所言,我一开始在设置网关的时候一直存在着误区,而这个误区也导致标题中的问题:虚拟机能ping通宿主机,但是telnet不通,这就很奇葩了。

2023-01-10 22:39:36 3925 6

原创 Spring Security认证授权练手小项目 腾讯视频VIP权限管理功能

主框架为Spring Boot+Spring Security+Mybatis+Spring Session。关系型数据库采用Mysql。使用Redis主要存储分布式Session数据。使用kaptcha生成图形验证码。另外使用了lombok、fastjson、hutool等工具。通过mybatis-generator自动生成数据库映射文件。前端主要使用html+jquery框架,请求使用jquery ajax。

2022-12-31 21:39:02 1411

原创 Spring Boot三种跨域解决方案与Spring Security跨域解决方案

JavaWeb跨域问题及解决方案,另外我下面会做补充。很多人误认为资源跨域时无法请求,实际上,通常情况下请求是可以正常发起的(注意,部分浏览器存在特例),后端也正常进行了处理,只是在返回时被浏览器拦截,导致响应内容不可使用。此外,我们平常所说的跨域实际上都是在讨论浏览器行为。CORS(Cross-Origin Resource Sharing)的规范中有一组新增的HTTP首部字段,允许服务器声明其提供的资源允许哪些站点跨域使用。

2022-12-29 10:12:23 2964 3

原创 分布式session解决方案 Spring Session与Spring MVC(HttpSession)集成实战

在上一篇文章中,介绍了Java Web的基础知识,以及Spring MVC父子容器初始化过程,有兴趣的读者可以阅读一下,一是作为本文的铺垫,二是本文所用到的项目也可以从上一篇文章获取到。本文由上一篇文章引申出来,我们知道Java Web有个Session的概念,是存在于服务端的一块内存,但如今服务都是集群部署,如何解决集群多个节点间session不共享的问题呢?session共享这种方案实用得多,也是现在最常用的方案。

2022-12-28 16:40:28 2192 6

原创 深入底层,spring mvc父子容器初始化过程解析

以下是对各个组件主要职责的总结:根据RootConfig创建了一个上下文:RootApplicationContext向ServletContext注册了ContextLoaderListener,传入了RootApplicationContext根据ServletConfig创建了一个上下文:ServletApplicationContext向ServletContext注册了DispatcherServlet,传入了ServletApplicationContext。

2022-12-20 18:35:06 2100

原创 fastjson序列化保留对象类型信息

一般的json框架在序列化对象时,会序列化对象的实例属性,而反序列化时,通常需要指定Class对象才能反序列化为原来的类型,但有时候我们无法手动指定Class对象,比如将一些自定义对象写入redis时,然后再从redis查的时候,就不能反序列化为某个具体写死的类型。因此,我调研了一下fastjson框架,发现它可以在序列化时保留对象类型信息,然后在反序列化时根据json字符串中的类型信息自动生成对象,用法很简单,只需要WriteClassName和SupportAutoType结合使用即可。

2022-12-19 19:02:41 1269

原创 项目接入腾讯云短信服务SMS实现向用户发送手机验证码

早在18年的时候,我就在项目中使用过阿里云的短信服务,现在我上阿里云短信控制台看,还能看到当时创建的短信签名,如下图所示。出于某种原因,我现在想重新申请一个新的签名,却审批失败了,原因是:意思很明确,就是说你必须要有一个上线的应用(公网能访问的),自己个人学习或者做一些线下项目啊都是申请不到短信签名的,之前18年的时候并没有这么严格。目前有两种方案:第一种方案的话需要花钱,自己又只是个人用户,并没有需要上线的项目,所以这里先去腾讯云看看情况吧。经过自己的一番研究之后,发现腾讯云也一样,需要有上线的项目

2022-12-03 17:54:27 2320

原创 Spring Cloud教程 第十二弹 Spring Cloud Config整合Spring Cloud Bus实现配置动态刷新

中介绍了spring cloud config的基本使用,但是配置无法动态刷新,也就是说如果我更改了git或数据库中的配置,项目必须重新启动才能使新配置生效。Spring Cloud Bus需要引入RabbitMQ或Kafka作为消息传输的媒介。与手动刷新不同,动态刷新的改造主要在config server项目中。

2022-12-01 23:16:59 1326

原创 Spring Cloud教程 第十一弹 Spring Cloud Config连接git和数据库

Spring Cloud Config为微服务架构提供了配置管理的功能,通过Spring Cloud Config服务端提供配置中心,在各个微服务应用的客户端读取来自服务端配置中心的配置项,配置中心的数据源可以来自git、svn、数据库、操作系统的本地文件、jar包中的文件、vault、组合。Spring Cloud Config = 微服务配置中心。

2022-12-01 21:50:39 2300

Spring Security认证授权练手小项目

Spring Security认证授权练手小项目

2022-12-30

spring mvc项目

spring mvc maven项目,导入IDEA后无报错,需要在IDEA中配置Tomcat并将项目添加到tomcat才能运行。 可用于分析spring mvc源码、spring mvc父子容器初始化流程、session和cookie机制、spring session等,也可以用于学习Java Web(servlet、filter、listener等)、spring源码等。 该项目使用servlet3.0规范,无web.xml,无spring.xml等配置文件,所有的配置均通过Java Config、注解搞定,项目中还集成了log4j2技术,以及前端html文件等。

2022-12-20

Java发送email:spring email、微软ews

spring email发送email,微软ews发送exchange协议邮件

2022-12-05

Java Swing+NIO实现的CS模式聊天程序代码

CS模式聊天程序代码,实现语言为Java,前端UI界面用Java Swing框架实现,服务端与客户端通信采用Java NIO,自定义按分隔符\n读取消息的消息读取格式解决TCP粘包拆包问题。

2022-04-17

SQL、Hive SQL等SQL血缘解析工具

// 测试用例如下 // 设置元数据服务 Delegate.getDelegate().setMetaColumnService(new IMetaColumnService() { @Override public List<String> queryMetaColumn(String dbName, String tableName) { return Collections.emptyList(); } @Override public boolean clearMetaColumnCache() { return true; } }); // 设置通知服务 Delegate.getDelegate().setNoticeService(s->{}); // 具有子查询的sql String hql = "select id,name from (select id from table_1 where id={p0}) t1 inner join (select name --this is name\n from table_2) t2"; // 获取id字段的血缘 LineageNode idNode = Delegate.getDelegate().getLineage(hql, "id"); // 获取name字段的血缘 LineageNode nameNode = Delegate.getDelegate().getLineage(hql, "name"); // 打印血缘 Utils.printLineage(idNode,nameNode);

2022-01-14

Goland下载安装教程.zip

go语言开发工具,goland在windows上的下载和安装教程

2021-12-26

mysql-8.0.18-winx64.rar

mysql8.0版本的压缩包,使用与windows64位操作系统,压缩包附有我自己写的一键安装脚本install.bat和使用说明install.txt,方便大家的安装,安装过程有问题可以私信我。你也可以忽视这两个文件自行安装

2020-04-07

mysql-5.7.27-winx64.rar

mysql5.7版本压缩包,适用于windows64位操作系统,压缩包里面有我写的一键安装bat脚本,方便大家的安装,请双击执行前不要挪动此脚本位置!

2020-04-07

dbvisualizer.rar

只要有jdbc驱动,就能连接任意数据库,同时使用多种数据库开发项目时,再也不用切换数据库客户端工具了,只需一个dbvisualizer方便开发!

2020-03-02

FileZilla_3.43.0_win64-setup.exe

ftp客户端工具,支持ftp协议与sftp协议。

2020-03-02

jdk1.8安装包

该资源是jdk1.8版本的windows环境安装包,对于刚接触java的人,不知道怎么在oracle官网下载java,因此本人提供了jdk1.8的安装包,供大家下载。

2019-04-23

jdk1.7安装包

该资源是jdk1.7版本的windows环境安装包,对于刚接触java的人,不知道怎么在oracle官网下载java,因此本人提供了jdk1.7的安装包,供大家下载。

2019-04-23

jdk1.6安装包

该资源是jdk1.6版本的windows环境安装包,对于刚接触java的人,不知道怎么在oracle官网下载java,因此本人提供了jdk1.6的安装包,供大家下载。

2019-04-23

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除