S 椭圆 = 4 S 椭圆在第一象限的面积 = 4 ∫ 0 a y d x 而椭圆参数方程为: { x = a cos t y = b sin t 且当 x 在 [ 0 , a ] 区间上变化时,求得 t 在 [ π 2 , 0 ] 上变化 代入上式得 4 ∫ 0 a y d x = 4 ∫ π 2 0 b sin t d ( a cos t ) = 4 a b ∫ 0 π 2 sin 2 t d t 最终求得 S 椭圆 = π a b S_{椭圆}=4S_{椭圆在第一象限的面积}=4\int_0^aydx \\ 而椭圆参数方程为:\begin{cases}x=a\cos t \\ y=b\sin t\end{cases}\\ 且当x在[0,a]区间上变化时,求得t在[\frac{\pi}{2},0]上变化 \\ \,\\ 代入上式得4\int_0^aydx=4\int_\frac{\pi}{2}^0b\sin td(a\cos t)=4ab\int_0^\frac{\pi}{2}\sin ^2 tdt \\ \,\\ 最终求得S_{椭圆}=\pi ab S椭圆=4S椭圆在第一象限的面积=4∫0aydx而椭圆参数方程为:{x=acosty=bsint且当x在[0,a]区间上变化时,求得t在[2π,0]上变化代入上式得4∫0aydx=4∫2π0bsintd(acost)=4ab∫02πsin2tdt最终求得S椭圆=πab
如何用定积分推导椭圆面积公式
于 2023-08-06 10:57:47 首次发布