如何用定积分推导椭圆面积公式

S 椭圆 = 4 S 椭圆在第一象限的面积 = 4 ∫ 0 a y d x 而椭圆参数方程为: { x = a cos ⁡ t y = b sin ⁡ t 且当 x 在 [ 0 , a ] 区间上变化时,求得 t 在 [ π 2 , 0 ] 上变化   代入上式得 4 ∫ 0 a y d x = 4 ∫ π 2 0 b sin ⁡ t d ( a cos ⁡ t ) = 4 a b ∫ 0 π 2 sin ⁡ 2 t d t   最终求得 S 椭圆 = π a b S_{椭圆}=4S_{椭圆在第一象限的面积}=4\int_0^aydx \\ 而椭圆参数方程为:\begin{cases}x=a\cos t \\ y=b\sin t\end{cases}\\ 且当x在[0,a]区间上变化时,求得t在[\frac{\pi}{2},0]上变化 \\ \,\\ 代入上式得4\int_0^aydx=4\int_\frac{\pi}{2}^0b\sin td(a\cos t)=4ab\int_0^\frac{\pi}{2}\sin ^2 tdt \\ \,\\ 最终求得S_{椭圆}=\pi ab S椭圆=4S椭圆在第一象限的面积=40aydx而椭圆参数方程为:{x=acosty=bsint且当x[0,a]区间上变化时,求得t[2π,0]上变化代入上式得40aydx=42π0bsintd(acost)=4ab02πsin2tdt最终求得S椭圆=πab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

波波老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值