1412: [ZJOI2009]狼和羊的故事
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3105 Solved: 1567
[ Submit][ Status][ Discuss]
Description
“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。
Input
文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。
Output
文件中仅包含一个整数ans,代表篱笆的最短长度。
Sample Input
2 2
2 2
1 1
2 2
1 1
Sample Output
2
数据范围
10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100
数据范围
10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100
HINT
Source
题解
最小割的定义是:
割:设Ci为网络N中一些弧的集合,若从N中删去Ci中的所有弧能使得从源点Vs到汇点Vt的路集为空集时,称Ci为Vs和Vt间的一个割。通俗理解,一个图或网络的割,表示一个切面或切线,将图或网络分为分别包含源点和漏点的两个子集,该切线或切面与网络相交的楞或边的集合,称为图像的割。
最小割:图中所有的割中,边权值和最小的割为最小割。
那么此题要求狼和样不连通 实质上就是求最小割 使源点和汇点不连通
那么就把源点连所有狼 汇点连所有羊(反过来应该也可以)
然后再把每个点和四个周围的点连起来 求个最小割=最大流 就行了
hzwer的做法 更好一点 参见代码注释中写的
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define inf 0x7ffffff
using namespace std;
struct edge{int to,next,flow;}e[1000000];
int d[10005],head[10005];int n,m,start=0,end=10001,cnt=1,max_flow=0;
int mp[105][105];
int dx[]={0,1,-1,0,0};
int dy[]={0,0,0,1,-1};
queue<int>q;
void ini(int x,int y,int flow){
e[++cnt].to=y;e[cnt].flow=flow;e[cnt].next=head[x];head[x]=cnt;
}
void insert(int x,int y,int flow){
ini(x,y,flow);ini(y,x,0);
}
bool bfs(){
memset(d,-1,sizeof(d));
q.push(start);d[start]=0;
while(!q.empty()){
int k=q.front();q.pop();
for(int i=head[k];i;i=e[i].next){
int kk=e[i].to;
if(e[i].flow&&d[kk]==-1){
d[kk]=d[k]+1;
q.push(kk);
}
}
}
return d[end]!=-1;
}
int dfs(int x,int f){
if(x==end) return f;
int w,used=0;
for(int i=head[x];i;i=e[i].next){
int k=e[i].to;
if(e[i].flow&&d[k]==d[x]+1){
w=f-used;
w=dfs(k,min(w,e[i].flow));
e[i].flow-=w;
e[i^1].flow+=w;
used+=w;
if(used==f) return f;
}
}
if(!used) d[x]=-1;
return used;
}
void dinic(){
while(bfs()){
max_flow+=dfs(start,inf);
}
}
int mk(int x,int y){
return (x-1)*m+y;
}
int main(){
scanf("%d%d",&n,&m);
int x;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&x);
mp[i][j]=x;
if(x==1) insert(start,mk(i,j),inf);
else if(x==2) insert(mk(i,j),end,inf);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=1;k<=4;k++)
{
int tx=i+dx[k],ty=j+dy[k];
//题解的写法 狼向空地和羊连 空地向四个方向连 速度快一点
//if(tx<1||ty<1||tx>n||ty>m||mp[i][j]==2) continue;
//if(mp[i][j]!=1||mp[tx][ty]!=1)//狼->羊&空地 空地->羊
//我的写法是所有点向四个方向连 速度慢50ms
if(tx<1||ty<1||tx>n||ty>m) continue;
insert(mk(i,j),mk(tx,ty),1);
}
dinic();
printf("%d",max_flow);
return 0;
}