“吾生也有涯,而知也无涯 。以有涯随无涯,殆已!已而为知者,殆而已矣!”——《庄子》
题目
给你一个下标从 0 开始、长度为 n
的整数数组 nums
,其中 n
是班级中学生的总数。班主任希望能够在让所有学生保持开心的情况下选出一组学生:
如果能够满足下述两个条件之一,则认为第 i
位学生将会保持开心:
- 这位学生被选中,并且被选中的学生人数 严格大于
nums[i]
。 - 这位学生没有被选中,并且被选中的学生人数 严格小于
nums[i]
。
返回能够满足让所有学生保持开心的分组方法的数目。
难度:中等
分析
笔者的脑回路又发生了崩坏🤖,不再多说,向官解学习。
笔者思路:由于此题的答案与学生的顺序没有任何关系,故将数组从小到大排序。并且根据题目,我们可以得知:对于相同值的学生,全部选上或者全部不选上;如果某个值的学生未被选上,则大于他的学生都不能选。因此,笔者统计每个值的学生数量并排序,开始时全部选上,从最大值的学生开始判断:当前是否满足条件,然后移除该部分学生继续下一次判断。
官解思路:假设选中的学生数量为k,某个学生的值为x,根据题目,x<k被选中,x>k不选中,不允许x=k。我们把数组从小到大排序,枚举所有k,只需要判断选中的学生中的最大值小于k,未选中的学生中的最小值大于k。
解答
逆枚举
class Solution {
public:
int countWays(vector<int>& nums) {
map<int,int,greater<int>> dict;
bool zero=false;
for (int i:nums){
dict[i]++;
if (i==0){
zero=true;
}
}
int ans=zero?0:1; // 有0则不能全不选
int count=nums.size(); //从全选开始判断
// 一旦某个值的学生不选,后面都不能选
int pre=INT_MAX;
for (auto& p:dict){
// 判断当前是否满足
if (count>p.first&&count<pre){
ans++;
}
count-=p.second;
pre=p.first;
}
return ans;
}
};
正枚举
class Solution {
public:
int countWays(vector<int>& nums) {
sort(nums.begin(),nums.end());
int ans=0;
int n=nums.size();
// 枚举前k个学生被选中
for (int i=0;i<=n;i++){
if (!(i>0&&nums[i-1]>=i||i<n&&nums[i]<=i)){
ans++;
}
}
return ans;
}
};