信息学奥赛一本通 1863:【11NOIP提高组】铺地毯

时间限制: 1000 ms         内存限制: 131072 KB

【题目描述】

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有n 张地毯,编号从1 到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。

【输入】

输入共 n+2行。

第一行,一个整数 n,表示总共有n 张地毯。

接下来的 n行中,第i+1行表示编号i 的地毯的信息,包含四个正整数a,b,g,k每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x轴和y 轴方向的长度。

第 n+2行包含两个正整数x和y,表示所求的地面的点的坐标(x,y)。

【输出】

输出共 11 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出−1−1。

【输入样例】

3
1 0 2 3
0 2 3 3
2 1 3 3
2 2

【输出样例】

3

【提示】

【输入输出样例说明】

如下图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,覆盖点(2,22,2)的最上面一张地毯是33 号地毯。

【输入输出样例 2】

输入:

3
1 0 2 3
0 2 3 3
2 1 3 3
4 5

输出:

-1

【输入输出样例说明】

如上图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,点(4,54,5)没有被地毯覆盖,所以输出−1−1。

【数据范围】

对于 30%的数据,有n≤2�≤2;

对于 50%的数据,0≤a,b,g,k≤1000≤�,�,�,�≤100;

对于 100%的数据,有0≤n≤10,0000≤�≤10,000,0≤a,b,g,k≤100,0000≤�,�,�,�≤100,000。

 【代码】

#include<bits/stdc++.h>
using namespace std;
long long n,a[100009],b[100009],x[100009],y[100009],xx,yy,t;
int main(){
	cin>>n;
	for(int i=1;i<=n;++i){
		cin>>a[i]>>b[i]>>x[i]>>y[i];
		x[i]+=a[i];y[i]+=b[i];
	}
	cin>>xx>>yy;
	for(int i=n;i>=1;--i){
		if(xx>=a[i]&&xx<=x[i]&&yy>=b[i]&&yy<=y[i]){
			t=i;
			break;
		}
	}
	if(t>=1) cout<<t;
	else cout<<-1;
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值