时间限制: 1000 ms 内存限制: 131072 KB
【题目描述】
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有n 张地毯,编号从1 到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
【输入】
输入共 n+2行。
第一行,一个整数 n,表示总共有n 张地毯。
接下来的 n行中,第i+1行表示编号i 的地毯的信息,包含四个正整数a,b,g,k每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x轴和y 轴方向的长度。
第 n+2行包含两个正整数x和y,表示所求的地面的点的坐标(x,y)。
【输出】
输出共 11 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出−1−1。
【输入样例】
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
【输出样例】
3
【提示】
【输入输出样例说明】
如下图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,覆盖点(2,22,2)的最上面一张地毯是33 号地毯。
【输入输出样例 2】
输入:
3 1 0 2 3 0 2 3 3 2 1 3 3 4 5
输出:
-1
【输入输出样例说明】
如上图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,点(4,54,5)没有被地毯覆盖,所以输出−1−1。
【数据范围】
对于 30%的数据,有n≤2�≤2;
对于 50%的数据,0≤a,b,g,k≤1000≤�,�,�,�≤100;
对于 100%的数据,有0≤n≤10,0000≤�≤10,000,0≤a,b,g,k≤100,0000≤�,�,�,�≤100,000。
【代码】
#include<bits/stdc++.h>
using namespace std;
long long n,a[100009],b[100009],x[100009],y[100009],xx,yy,t;
int main(){
cin>>n;
for(int i=1;i<=n;++i){
cin>>a[i]>>b[i]>>x[i]>>y[i];
x[i]+=a[i];y[i]+=b[i];
}
cin>>xx>>yy;
for(int i=n;i>=1;--i){
if(xx>=a[i]&&xx<=x[i]&&yy>=b[i]&&yy<=y[i]){
t=i;
break;
}
}
if(t>=1) cout<<t;
else cout<<-1;
return 0;
}