年会歌曲翻唱歌词,年会歌曲改编

本文讲述了作者作为研发部负责人如何收集信息、策划年会节目,最终确定以魔术、小人舞和吐槽歌曲《放飞自我》为主的年会表演过程,展现了程序员的幽默与无奈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题背景】

前段时间,公司要求各部门准备年会节目。作为研发部的文艺小青年,我光荣地被部门老大指派为部门年会策划和导演,允许我为筹备年会节目调动他能力范围内的任何资源。

根据公司年会筹备组的计划,我们部门人数较多,至少需要出2个节目。

【信息收集】

肩负重任不敢怠慢,我接到任务后便立刻通过以下方式进行信息收集:

1.首先要和部门领导沟通,确定节目在娱乐性,互动性等方面的尺度,确定节目主题和宗旨等主干性问题。

2.面向部门全体人员,逐个沟通关于年会节目的想法和建议,详细记录并进行分类整理。

3.短视频平台搜索年会相关节目话题,查找有趣且贴合我们自身情况的方案,同样予以记录和分类整理。

4.和年会总筹备组进行沟通,确认年会大致流程、道具、设备、舞台等各种节目所需的外在条件。

【问题解决】

我根据上述搜集到的信息和资料,对部门同事逐个沟通后,整理出两个方案:

第一套方案:

1.小人舞;2.魔术

第二套方案:

1.歌曲改编;2.相声

每个方案都写好详细的节目策划书后,提交给领导定夺。

2天后,领导单独找我沟通,详细说了他关于每个节目的想法……最终确定节目为三个:1.魔术;2.小人舞;3.歌曲改编(最好是吐槽类)。

我觉得节目太多,时间紧迫,准备推辞时,领导马上就给我安排了一个伙伴,让他和我一起筹备节目。前两个节目都还好,买好道具,直接排练就行,到了第三个节目就难了。改编歌曲,还是吐槽类的,想模仿人家新东方吗?我再次找领导沟通后,确认领导就是想要新东方的那种效果。

【问题结论】

……此处省略一万字……

经过两天两夜抓耳挠腮,甚至梦里都想着词和节奏。终于把词编了出来,后面改了两版,最终年会上表演的是下面这一版(鄙人才疏学浅,献丑了):

《放飞自我》 

(背景音乐:沙漠骆驼)
匆匆一年走过
转眼来到年末
又到了年会的表演时刻
程序员才艺不多
硬着头皮只能唱歌
吐槽几句我要放飞自我

前期架构没有设计
代码开发催得着急
敲完代码还要忙着文档梳理
分了几个UE页面
来吧评估开发时间
马上就要上线你得抓紧一点

什么安全架构 
什么系统性能调优
只为了项目上线而匆匆地奔走
谁又说bug太多?
点击按钮全是报错
一下班研发人全部都跑了

公司章程清楚
早九晚六弹性制度
我按时上下班严格遵守了制度!
功能交互很多
开发时间不多
优化流程才能高效又洒脱!

(切换背景音乐:失恋阵线联盟)
他总是一个人加班很晚
从不肯悄悄地偷个懒
评审会讨论会还有方案
畅哥他真的超级能干!

你说你项目上过得潇洒
不知道工时该填些啥
喝着茶悠闲地吹牛吃瓜
我却在旁边敲着代码......

你们总是爱虚夸
都不管我们研发
使劲把牛吹大
什么风险都不怕
PPT写好啦
产品都是现成哒
研发同事们加油干吧

找一个更加高效的方法
让付出都能得到回答
不虚夸不弄假潜心研发
小集体也能变得伟大!

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值