2023年浙江省职业院校技能大赛大数据技术与应用专业样题 2023浙江省赛样题解析-数据采集:离线数据采集 2023浙江省赛样题解析-数据采集:实时数据采集_子任务1 2023浙江省赛样题解析-数据采集:实时数据采集_子任务2 2023浙江省赛样题解析-实时数据处理:实时数据清洗 2023浙江省赛样题解析-实时数据处理:实时指标计算_子任务1 2023浙江省赛样题解析-实时数据处理:实时指标计算_子任务2 2023浙江省赛样题解析-离线数据处理
农业大数据项目 搭建一个基于Hadoop大数据分析框架的农业大数据系统,该系统框架以我国农业的水果产业为例,完成我国水果产业中各个指标的分析。涉及到的技术:Spark, Spark SQL, Spark UDF, Jieba分词, Hive, ETL, ECharts等。可视化图表:饼状图,柱状图,地图,词云图,面积图,玫瑰饼图等。
2011-2022年高职大数据竞赛-赛题任务剖析 本系列共分五篇,内容分别为:第一部分 赛题内容 第二部分 任务剖析 第三部分 赛题模拟实现-离线数据抽取 第四部分 赛题模拟实现-离线数据统计 第五部分 赛题模拟实现-数据采集与实时计算 第六部分 赛题模拟实现-数据可视化(一)任务一:大数据平台环境搭建具体内容按照大数据分析平台需求,需要完成Hadoop完全分布式、Spark安装配置、Flink安装配置、Hive安装配置、Kafka安装配置、Flume安装配置。分析Hadoop完全分布式:请参考Hadoop-3.2.1环境搭
2011-2022年高职大数据竞赛-赛题内容 本系列共分五篇,内容分别为:第一部分 赛题内容 第二部分 任务剖析 第三部分 赛题模拟实现-离线数据抽取 第四部分 赛题模拟实现-离线数据统计 第五部分 赛题模拟实现-数据采集与实时计算 第六部分 赛题模拟实现-数据可视化第一部分 竞赛内容赛项以大数据技术与应用为核心内容和工作基础,重点考查参赛选手基于Spark、Flink平台环境下,充分利用Spark Core、Spark SQL、Flume、Kafka、Flink等技术的特点,综合软件开发相关技术,解决实际问题的能力,具体包括:
《PySpark实用教程_v3.1.2》简介 《PySpark实用教程》(基于Spark3.1.2和Python 3.7)预览版下载:这里下载大数据分析一直是个热门话题,需要大数据分析的场景也越来越多。Apache Spark是一个用于快速、通用、大规模数据处理的开源项目。现在,Apache Spark已经成为一个统一的大数据处理平台,拥有一个快速的统一分析引擎,可用于大数据的批处理、实时流处理、机器学习和图计算。2009年,Spark诞生于伯克利大学AMP实验室,最初属于伯克利大学的研究性项目。它于2010年被正式开源,于2013年被转交给A
电商大数据分析案例(Hadoop+Hive+Spark+Azkaban+Spring MVC+ECharts) 项目描述某著名电商平台双十一美妆销售数据分析。由于是真实的商业数据,所以做了脱敏处理,数据集中对店名的引用被处理为产品的品牌名以保护店家隐私。。通过对该平台双十一美妆销售数据的品牌、销量、热度等特征的分析(平台视角和用户视角),尝试探索以下问题:双十一期间,最受消费者青睐的产品或品牌是哪些? 双十一期间,美妆行业各品类的销售情况? 双十一期间,消费高峰何时出现? 双十一期间,客户的评论数对销量的影响? ......项目架构电商大数据项目架构图项目流程项目流程说明如下:1.
某物流公司运输车辆超速实时检测案例(数据源 + Kafka + Flink + Spring MVC + WebSocket + ECharts) 综合运用Flink实时数据处理技术,对Kafka收集到的运输车辆实时监控数据进行分析,运用模式检测及时发现超速车辆,并在服务端通过仪表盘实时告警。
Hive shell 中夹杂大量的日志信息问题的解决方法 在hive-3.1.x版本中,使用hive shell时,会发现在查询命令中夹杂大量的日志信息,严重干扰查询结果显示,特别是强迫症患者,不能忍受。通过修改conf下的日志文件,会发现不起任何作用。那么,怎么解决这个问题呢?搜遍全网,终于在这篇博文里找到了解决方法,参考解决方法,亲测有效。...
《Spark实用教程_v3.1.2》简介 《Spark实用教程》(基于3.1.2)预览版下载:这里下载大数据分析一直是个热门话题,需要大数据分析的场景也越来越多。Apache Spark 是一个用于快速、通用、大规模数据处理的开源项目。现在,Apache Spark 已经成为一个统一的大数据处理平台,拥有一个快速的统一分析引擎,可用于大数据的批处理、实时流处理、机器学习和图计算。2009 年,Spark 诞生于伯克利大学AMP 实验室,最初属于伯克利大学的研究性项目。它于2010 年被正式开源,于2013 年被转交给Apache 软件基金会