整数数组 nums
按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
在下标 3
处经旋转后可能变为 [4,5,6,7,0,1,2]
。
给你 旋转后 的数组 nums
和一个整数 target
,如果 nums
中存在这个目标值 target
,则返回它的下标,否则返回 -1
。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
提示:
1 <= nums.length <= 5000
- 题目数据保证
nums
在预先未知的某个下标上进行了旋转
其实我们看到log(n)就可以想到,我们要用二分查找的变种,但是这里的问题就是这个vector不是单调增的呀?我们要分情况讨论。我们假定拿到了nums的一个子区间,如果头比尾巴小,那么这肯定是顺序的,如果头比尾巴大,这个子序列的开头那部分肯定是倒序的。
class Solution {
public:
int searchHelper(vector<int>& nums, int target, int left, int right) {
if (left > right) return -1;
int mid = (left + right) / 2;
if (nums[mid] == target) return mid;
if (nums[left] > nums[right]) return max(searchHelper(nums, target, left, mid - 1), searchHelper(nums, target, mid + 1, right));
if (target >= nums[left] && target < nums[mid]) return searchHelper(nums, target, left, mid - 1);
return searchHelper(nums, target, mid + 1, right);
}
int search(vector<int>& nums, int target) {return searchHelper(nums, target, 0, nums.size() - 1);}
};