TPC-H
商业智能计算测试TPC-H 是美国交易处理效能委员会(TPC,Transaction Processing Performance Council) 组织制定的用来模拟决策支持类应用的一个测试集.目前,在学术界和工业界普遍采用它来评价决策支持技术方面应用的性能. 这种商业测试可以全方位评测系统的整体商业计算综合能力,对厂商的要求更高,同时也具有普遍的商业实用意义,目前在银行信贷分析和信用卡分析、电信运营分析、税收分析、烟草行业决策分析中都有广泛的应用。
TPC-H 基准测试是由 TPC-D(由 TPC 组织于 1994 年指定的标准,用于决策支持系统方面的测试基准)发展而来的.TPC-H 用 3NF 实现了一个数据仓库,共包含 8 个基本关系,其数据量可以设定从 1G~3T 不等。TPC-H 基准测试包括 22 个查询(Q1~Q22),其主要评价指标是各个查询的响应时间,即从提交查询到结果返回所需时间.TPC-H 基准测试的度量单位是每小时执行的查询数( QphH@size),其中 H 表示每小时系统执行复杂查询的平均次数,size 表示数据库规模的大小,它能够反映出系统在处理查询时的能力.TPC-H 是根据真实的生产运行环境来建模的,这使得它可以评估一些其他测试所不能评估的关键性能参数.总而言之,TPC 组织颁布的TPC-H 标准满足了数据仓库领域的测试需求,并且促使各个厂商以及研究机构将该项技术推向极限。
- TPC-DS
TPC-DS采用星型、雪花型等多维数据模式。它包含7张事实表,17张纬度表平均每张表含有18列。其工作负载包含99个SQL查询,覆盖SQL99和2003的核心部分以及OLAP。这个测试集包含对大数据集的统计、报表生成、联机查询、数据挖掘等复杂应用,测试用的数据和值是有倾斜的,与真实数据一致。可以说TPC-DS是与真实场景非常接近的一个测试集,也是难度较大的一个测试集。
TPC-DS的这个特点跟大数据的分析挖掘应用非常类似。Hadoop等大数据分析技术也是对海量数据进行大规模的数据分析和深度挖掘,也包含交互式联机查询和统计报表类应用,同时大数据的数据质量也较低,数据分布是真实而不均匀的。因此TPC-DS成为客观衡量多个不同Hadoop版本以及SQL on Hadoop技术的最佳测试集。这个基准测试有以下几个主要特点:
一共99个测试案例,遵循SQL’99和SQL 2003的语法标准,SQL案例比较复杂
分析的数据量大,并且测试案例是在回答真实的商业问题
测试案例中包含各种业务模型(如分析报告型,迭代式的联机分析型,数据挖掘型等)
几乎所有的测试案例都有很高的IO负载和CPU计算需求
U2FsdGVkX18SUIyXtZ0Opilb7f81+krkrHdRmX+xFsF8wkb+YcJGynyS+3EmUZyt
VBNLOMKsCwAYTxsIa9V92kI5Jb+jaf89M8Nx5xll4wGk/ysl1en1RYeIE0dT7Pxy
4ZBglNZw6yydvNOJxURC8iF7Tlam5f1CSrYkQamFrRA2U4mHwgrEL4gk13y7AQAE
ejX5/ibsjsfXiEWgkHjWC6uhW1Ot21FJwvFm/tGuEIdMKoIvm/lA+sCziSHrEnQN
hqBXhZlOYygCuMmPZi/pqEYf34+V6lMbGb7nUCVNpSPJnzil1S7+bEeU5THkFeLn
4Bh33u+PyNzbWJBvGOIfGgUC61H04CHbtsS277Ib4vlhgEK+Uh6K+ORoER0gau/j
ASNqUOiUZ0SjwNY2zuVuaNizmjeY2b/XuMMgI/U4BJ53p/U1p4aDQlnRPrCeUc2a
RJ1z6uOrSMRc/9X3zxr8wRzufC7bmnA9EfBwXOmIoaOkJcqr4MaQMceYpRZFAwvq
YYy0P4kqeCxqPwBUpD0aha0vyJJl7AFBn7aMD5xxuAw/izKjjlmUm0Da28A+LbNF
nw2CBvXYS6f9wCv9yq/b36qvTIcFuoIQAl3AhG03qn94qMTJhg7bTBDtIasYfQG1
MHI3OfoNvIBcmVDzLwrEOj4jGAFbQywEYyJQReN/4U10pFRsOY9BzfxYUDrjQG9/
53Z5sc+A2Hb2tcOgFrpuPJGFj+gifH8YV9ICRIz6qHz42fdrz8xNJfV0r5GyPmiB
WG66sqrUO7EUsgdp6bW34pzEpwwyOHj6R/w+KumNz/Jjqom7a+Iaj0DooFsWcxy2
89LtgDDcD4iaz6MrLhOk+nBm3Nt5w1y2fkx1/5MrBqzzFtXYiLtTqhnTQcTHhKqV
76HJEMaMGlRfCF1YcB+wOPnTJiGzT8NIuyK05cFA0d2Sr7+/NOAMyffz94kX6nw2
srNTuvn6ebxghMhudBNa9dbzgYscM7WlbVp1kB6sI/DJ6PgNk7s5kt5+cjjOo3yv
KNV9upiZTAok6DSOumjC0nfDtEUFKRXR/adhZNU+keinLjFJdoZKga5GU1wzWON9
50NkZk0IBhJlIURLthvCCHgpdnUnjpZLfU1TkqvgA9DhYCo6wIi2rRL66/6aOZeS
8ti4pkYhd56/ZHSFqCynmpIOHV+xdfK4Zek7zFfkkFQwbghk3z/WbaiOqaFMl9yj
bepGKQDjwl8SrqMrLs7X7LWHTN9XyxQWdOjHlhrFM69XuLVmTBMBIEz5Was3q6S4
TND96zruv5/iVA5BAWuGNz1A7TfxImm1X4fRNUPmuZqv3StRjYqlrHZ/mDJVaQ8z
2EgJR2Uqu43JRtKa7EPuuoXsaHKkKHXG18ixqZB5oyDGp2dDkbjagNcMGSggI/BU
vFBlmG/EkMaZdfZHtaYvtjjmfuQOm8b+zWuSo0URCz0u7c3fFYJchld4vNS2M4Ke
+KtSCRMfh21DuwIifio3MnBd6lxTNlHXs1pMlDjY1PhT/onUn12mRKN8287bBOQ3
q2lGzo2GdoUaLSkG+2pXWGtSl3S0GAY22KUvvG4EsKTB2OJLZZT6SfxMfen3x9gX
7V06YlMGGlB/G1yCJ4H+PPPpcXP5yZwgwNgzUcJ0NA2vbRVS23vHl+4YxiwQP3pK
CTw/99M3ofDnyviBa5ptavlAMFaoD7HJUsPnyY78Xw4IZPijZPswy5GWVVXYSqij
B0g4ijr8CFB8zz1LGU6mesXre3ApxqxOqEwvfZBWWAvMWfaZYysZvoYwy1GEzzwV
1gLWefv0j+C96fceuLAWuHCAVopaDmaMIkRIHKfFnqGN5eNd92goePxjttwV3Bex
D8HTho9bWc/JLhyUbRYP9XFdNIy8HIz39KYE9PCMSHA1hl62LtwXEpixK6w/jjaX
so8szdMVsvBriP5irg1PXXwZPkNTVDfjftp2uSLFrCBOtvj22Lj+gepkTSiL1zmM
niUZsWeyvf30M9U8eHmELG6Th/sZov/MbWd3g2DM58cvFpRzY/bQH57WDc2ePLpq
NfcXx2HMtneTABz86hG9EFuAvX8B8QfmQSGQQce8aHKL6WPzesWjbM7K743IQxSb
aIDBZYKf5o/95yEwkwpEOXJparKJ+I4oDEs5E0zTdBL6HPD3yBENCcGVHkKsIbhz
WSXkMp4TwQhYbXw1YTolQxJxrn/0mL6AAuwhGfVSNyBIqUQSis2zZwdFs/33QJ2S
TGOfYwfnT1Wxs3JLj+dA+5RBhkb2uj5id4RX8sDOWXE4FF/AmWrpRyOsGTUZeM95
zxYlfSodcox79yFLZJS8D/cMCxKqHXh9KX2ETeGV6McpnfdTCIRqARENFlnQQqRE
0uQnh59m4yQgtMwErsZQiE2Yx7voU9HK30ZO7u72X9U2BbADIQL8PHx6cy/nqL5R
jquXdUOWbE7uMU8Wk3DA8kY4lGz+kA+y2NVxoNd3cikgnq0uvap4F5LO5ocVp8WE
luhVrBZZkIYuZOWWJ3Sd8/RkPpPLHUwKW3Z5SxVOfViGGPiY21LpEZVzPgitLsvo
7bgJ8UFkR5PmRq2wyQLS0G/5hJmbQxqpTP0yP7SwToM6gf9HCXUQwNToeYvPWH8z
DfP+qz5U5+EICAVwMj4ep0H1zi0h9++gJWCLChT2ezdsAbYsyLnvQXtX2GNlkcvb
QUqmMBg6IQ+nfGgl1Gob0VTcuOo0aFGfC1JKDJfEnyMYuuxXwhjbS/M9Ngs4mJiw
BZ+vfWoL/EYp3ku/PT4leL/CG+nqZjEx3rHPhFt0Y8zWIjZwXi5b1wFZ56Gv/FNs
L7mCF/2Wcydv7A99bpqjsIriuVJzb39b3TOLccsL6RmzEjbQU6/6n98sXGmBt8rs
guiJj4BC7MHG7Bwz4IxsEQVlOZeEiN9RhraaYr1/1UjSigX8ezOwJ5MdIhjnXj/+
KjSNjYh4MMCnGvmlGm2y1k6QC06MMHpN8b4J0UXAgaN/1z6zslVn4Sj5yzzomftA
aH31VZJEn+2QSKZAyrC+qpJhX3lSyc+NN6+S9WY+nWYaTdaxKZTTXhUImYFLseI/
oDprDAi07bKXj5b94WCGWEpXuCu600ngzc/H4paJBQkbMu750Q+0i6K96rjRVYmC
cPHSq57lNI3UKrVtpwWosTKN46O3Af8fcmA7+2FYha44pxyI0Qfs5dk1FQwpybCx
DLkeceMzy9+/lMqzalV19IN3Ezy5lHlxq+Y0RmffCLikJWCz7sdcO8WWQxRfJwdi
qr9HX+VW7EMkBvL3n+E9lLPZnW13wS9qJb+rZCBuQRGTs3q7LNXVW0qAFt/zlU/W
NIsjgYTwTXAP30Oc/qElpXzqW7OjAxUd7zh5HY0ljpFrwmYtiYBIbkb0GzAPILPz
+B0smEB+sPYcTIx+mwy5X7VAI8d9OmIVQnLGBK5GyLHt+gqGOIDezgMZxGJS0mCL
+TDn0pDbQfTUWg+8PeJFjnivqR2D+qx0Gm5EXGSI/aDMx7blm0lCOHmelZutDtpD
o8+F2IsE28/fWOr7DpS6qFxM/Hc+m51KZyJSuTpGvl8YHDzv/oEHNGPjCpkTyRjR
wkGKfrI80DihgM7JrNiEMsCBiduatLNBHWHaUwvmZYsHG3MHkH5xZzgzIQYENyRu
9eMPQ7Q3yTcj+qh8yYUsODCHosQ3FfuFjERbNdf7RRy3v3p/++373/CmK/riwQ51
x1rCIJTfhq/8tcPYyYPlrXzEpair9g6/uhC9ugySe+p5R1a3FcPCBeUhSvklY3s9
4g514NleIg4jILtR+Np7xreGF3ZtHcJ0Fwxk3kl7271IrOQD/fd06hC++AqpUzW8
iJY7QVq6E274IrV0RjxR9w==