Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
[1] Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。
Hadoop由 Apache Software Foundation 公司于 2005 年秋天作为Lucene的子项目Nutch的一部分正式引入。它受到最先由 Google Lab 开发的 Map/Reduce 和 Google File System(GFS) 的启发。
2006 年 3 月份,Map/Reduce 和 Nutch Distributed File System (NDFS) 分别被纳入称为 Hadoop 的项目中。
Hadoop 是最受欢迎的在 Internet 上对搜索关键字进行内容分类的工具,但它也可以解决许多要求极大伸缩性的问题。例如,如果您要 grep 一个 10TB 的巨型文件,会出现什么情况?在传统的系统上,这将需要很长的时间。但是 Hadoop 在设计时就考虑到这些问题,采用并行执行机制,因此能大大提高效率。
名字起源
Hadoop这个名字不是一个缩写,而是一个虚构的名字。该项目的创建者,Doug Cutting解释Hadoop的得名 :“这个名字是我孩子给一个棕黄色的大象玩具命名的。我的命名标准就是简短,容易发音和拼写,没有太多的意义,并且不会被用于别处。小孩子恰恰是这方面的高手。”
Hadoop是一个能够对大量数据进行分布式处理的软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。
Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。
Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。
Hadoop 还是可伸缩的,能够处理 PB 级数据。
此外,Hadoop 依赖于社区服务,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。
U2FsdGVkX1+uDuHFk7JsoIe16uptG2SY/1ebITKUhck0yJbT896G1nHodwtffmDQ
pWQZGR3SWrRroH3NvRf8aZpzixJ8BkAv6k+jpU8d7gqFeyrKvziXrg7c3E0YBont
2UV1F2g28hRqeG0kdhUjKvQPH1PkJUa3iNhHMRshL70KwSMGR4AA8rXU9nxw+fZb
lkzfeVMOucA7wUwu8Bv6V0apPXld8RGLIyg8Q4iy1idWRJuVHGC84Krr+pDY9+3j
wy5p4JgjjH8gmzqw/lpf85ty9eE/+Jp2j3dsSc6voZa3fKfuV89Tfyjct1nicyWC
7q6bLZRWuXEy1Lzh3xP8Hho4RGKovcmptiKD6gzsOWVv+04LGvw1DGL9kpJWGYKD
3E/lEs8qQa88AdSfjDLYXKidtLCdQlpwHKOnsmzQAvSN1IxrXJuHUaaIKdhzhvTW
NOat+QLb3wNbFBGSGnHz85ZOQPU53tnktOZs1fJPpxSmI8kY8C9zLCMf2qnhXsfj
gHcVlc8v/K+OWEazFyHLn+orwG0/Lkl8nSOphT6sPMjfeJR+2mBIsOoKBY1SSMEe
F01vgeEtZEjbgBYWLdjcohdlaSmXx7KanrhdDJ5LzrdzdHcYvoucHucAuIL/1+7L
QNIBBhWrb0kzDZoCQcegjKzfhRvd8GVSt/tXQJkyPKyUEy9N7nMpOji5+ObJPMqI
Qr/sZZ1QNGltZ3xS8mvjHTsUmt2TDCobQ0PXrOuYQdIGzymeE2bi95/3/7jlVlbX
yOWwYJtK+PonKv4bMghpj7HnTkpS7UKYY+1ZILEM6CFQACindZY/INLRJrgWmAuA
4294qTH2GQl5Hptq+bh5kyAO5+wXHECUNn0j7I0mFQO6fztveCCIkrA74KCcq8t2
uoL5T6NcTTCxZ3F8uQPVg3jdceWwcGLVBPG4MIyZKaLgb65KyiM6ak7PIoiApMN5
9drxUVnLWNprG3xv0iKra8KlSRfYH2QPpiQltcai64srpSAHSXSxRTVmUUE4A/hK
sfbf3FUBIFVatTokXN9RfXdNz89DIT2LwNIyBz1jKK/i2q3C8CXEn9YZdT6/rIaB
xnsCYN93m/CisGBa42qKU3Fi89XWhWup/CMmcHdpT6yDOmSs/wINlnKIEBB2YkZe
WvT7KrBopZwkrrUvR+24Uh6rpoLJak0cNNAXaYowoiYmKGQHAKHzUigt95TiBgoG
6MJE6AlMNghVzkko85JEu4WxjB2FCZAyTviQA1d+Hs/h/xLBiHPGjQCF6iPuqRye
jstGDvu5XY/e55zVJYV1oYoWtg4DETrXe5k4QiS4/Pbn+3bukKQ0u7xBFFvkXR1V
s2PuVTEK2UDRLacJk7JM8/vB+mHGbpd8TmKqtciorp/Z8RLBaOOgbV2B7B0Bky2v
KNdcJK3vWnrdqaF6+rzrFD4qJ9ZqLdLyB3DHn5xoAqLciNNxOdoJZ7DOuTFuzy6F
0oeWNwBVaGbdLGSlI4skkuGfg7Kp2e80nrvC7X+I+CvaESbj3TUJpftm8URsiv6N
1GeqCMtDm84dm75YEzbZv5epaGT85x4vJ5wqX+m4E3e57/CdpvbdvDQLdJwvs7ET
+hF4O5cTgPd+y0RpFL6Lrjb6nlrKbnYXuA04XwZAlsDfZLxX8YQHwg36VwUfmOQv
EKczAoaC4ikDc8DAwZT8AhC6Q58L5F5y5l6MoDiudsDdJq8pov+MENDUKMOx6A2G
5E5FzF9Eyjo34FM5isJpIdR2s+w98AQEOCG9RqPw9Y1cPbqbRGN7fwFZu16V/6WB
bnlySIUUKBMQZJ6xRfEq5HvDrnJBUQ/yItzBJlhKZL7KAXtrOw+Sl6YiLL/8y0N2
ayI16dJ/g/WGkKVcus/jbKDEd7SHo4aau6J4hL3ffLBpYHhoJEzi5Hblx29h+ZBM
tbwErdHq9baaTfL304+v6/CGJ239Su1oBMw7oE4K1lNxSqFM00LNbYubzaA8rCO7
Sv77qjjHNktwEsUI9XZWVtkjnc6j8E5R75DTuHSg2kvmDfysftGWAUcMzlNeC24C
LHZvTcrbeovwGp06r82H02S3rNMrgz+n9IO+8k6dbefQmIrdGkH8/X5OSYMOy7pg
xBW/T+pV01y6i+xJxa9jvQcjz5VJ72BGPzo5m96q4GGoyjqYsL5lI2jdHmtSDU/Z
DiOdLkXv+cvQZ5/2/0aqLtYN02bmEOjOVPGyOUNsD10lGjlj6fSVMHKPvmIf25WF
FxHxrwiR6YUo6xZaLdZoE8XcVx//sLQrbaIYjZad4dYhJ6VOyqSEgM4MjcVHoCqD
zNnakpBkHpHUwbj3hRJdk/lTx29g9dD4ewYwOjqjq5tDgSL15DFrtO1ALiMBOihO
Ub0TWseNA6+O+deMmOQeApYp9TpQvt85s2xPsdybpglMMaMQcIVCIurR/hfhearG
68PKk2x4ATdqZbzrGvAMHGT50rNboi0WtOQjfv41yxljddV/ccb5ptV1Okrg2tLH
YZwTiHbp7VI2G7cOk4fZxxPj4F95EXdRdMYaNqxZTyas8ADfKHt5WJMjjxWIAKH5
BZWA0IshXh4Y++3t06CnXStGaid0ynhIe4rLc8HSbhxgxxNevDclD/6Y5Y3xb3vr
tB4qu+BlLZTOdnWvfvmmb3oCe021Qs0Rb0hFqi/RsxNGVeBXOd5TkU0B9R/gM4ly
OHEA6bBfyJmJGxOs3NeYntPOQ0sPAbnxMrhmsCnA8In9vIL7sLppg2h9Wsk5tciy
B35zRWFulTAajFjK5esaDQK5fGTNsIK72JopU5CPCpI/y/xkAjAfaOh/jIhpJbW5
wqBohB6yton3wFfVsbGkDINXBnv03Iv9ZjXpXLoEZ4Fk+Mdnkz2+gCAF2rwFlhon
N0XL8gZs2550nvsNPFYFyZ0cRTiPB3Mvu5j2JzDQcrEgDhAumzfwBm4NEU6FEblG
WIWzzRQM7fxAmgptcLuvUUGmNYPMevngX3f+eWpZhBFNt0wNiALru0Oudvg8UUu/
53GjT66dikGzgfTpvf/vQTGBfV+GFuV5AA8k0BGNsBEcPeYqOzLzRo+x4vOkFC8l
mq/U1NbKFTZiUhozuoEpfq4xpfGUZ38JNhZm6HGU/QIKOp2VeCu8/uc4soSsSavS
9IeBgSEttnWkSpd6aSkWZfmMrRBNGPAlmsntUFMqCelGHyKQj5y7yorzM/gXhT14
hl7zd2fMaQPEFwqybtLwcWczHB7FV8pNHKTVAsy0IvZe6Mwgan1KWCVDAuv+nZpT
sIqSdGoK8723FmnkBWQIAFujuvc1RQycPG7sbHeR9KyTk1Q2M/G2RU3cUmWZiXDa
n2k8r/RWQmONLXqONLHeHk0xzvtpcE5uvF4SSqJJ9AQfmoPdD9js8Svg7iWeYCKi
LX5KOqtrRdUpfIqDXPccu2IooFphd8ZuGwvt1iiTjSzdCoIbZc4qgH5ZxuYL+LOR
TbFSEBa0Dt2flqfPIii855R85JanlROV/nSXBdqN+OM4NAexj3a6/taIyCvNeTcd
p9uVRp2T5iB1BADcf+jTcgYw2aDYxJvLpsHj6hNzR/wLLpuL2wWsV2LJmjYmqTxD
Bkojr8EroKXP6UMjDLhZcPphweGdcJjZOYjWlCegy1Oxjsn1J5OofQDVQI3AOo7d
qv/1OebUswK/0C5CGaUjNsU4saMIJvmwsl9W4g+LK1msTFWt0bOL+nBq6C8uydcQ
IupsNBIERAl+u5WbPGcEWIkAEW5idHAG1Hl2tSEyLXSSpNJ8JSsyOP4Xfa/R8qXo
bIsjoUN8WKcwLwhfj66ayTd5BGVE/r5OH86CqTPRWf/hahoNGm8GuNVhlUzt+gNS
bh99qM02QiMMf31baH+rBOzDzvYQaC5Y+Xuw4uw3LO0=