一 旋转角度坐标的计算
1.如果O点为圆心,则点P绕点O旋转redian弧度之后,点P的坐标变换为点Q的计算公式为:
Q.x=P.x*cos(redian)-P.y*sin(redian)
Q.y=P.x*sin(redian)+P.y*cos(redian)
redian表示的为弧度
弧度与角度的变换公式为:
redian=pi*180/angle
2. 如果O点不是圆心,则点P绕点O旋转redian弧度之后,点P的坐标变换为Q的计算公式如下:
Q.x=(P.x-O.x)*cos(redian)-(P.y-O.y)*sin(redian)+O.x
Q.y=(P.x-O.x)*sin(redian)+(P.y-O.y)*cos(redian)+O.y
二 旋转任意角度的步骤
1.首先默认旋转45度时,所扩展的图像最大,即为根号2倍的长或宽的最大值,将图像填充到可能达到的最大
2 使用getRotationMatrix2D函数求取旋转矩阵,使用warpAffine函数旋转矩阵
3 求旋转之后包括图像的最大的矩形
4 删除多余的黑色边框
三 实现
#include <iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
void rotate_arbitrarily_angle(Mat &src,Mat &dst,float angle)
{
float radian = (float) (angle /180.0 * CV_PI);
//填充图像
int maxBorder =(int) (max(src.cols, src.rows)* 1.414 ); //即为sqrt(2)*max
int dx = (maxBorder - src.cols)/2;
int dy = (maxBorder - src.rows)/2;
copyMakeBorder(src, dst, dy, dy, dx, dx, BORDER_CONSTANT);
//旋转
Point2f center( (float)(dst.cols/2) , (float) (dst.rows/2));
Mat affine_matrix = getRotationMatrix2D( center, angle, 1.0 );//求得旋转矩阵
warpAffine(dst, dst, affine_matrix, dst.size());
//计算图像旋转之后包含图像的最大的矩形
float sinVal = abs(sin(radian));
float cosVal = abs(cos(radian));
Size targetSize( (int)(src.cols * cosVal +src.rows * sinVal),
(int)(src.cols * sinVal + src.rows * cosVal) );
//剪掉多余边框
int x = (dst.cols - targetSize.width) / 2;
int y = (dst.rows - targetSize.height) / 2;
Rect rect(x, y, targetSize.width, targetSize.height);
dst = Mat(dst,rect);
}
int main() {
cv::Mat src=cv::imread("../3.png");
cv::Mat dst;
rotate_arbitrarily_angle(src,dst,30);
cv::imshow("src",src);
cv::imshow("dst",dst);
cv::waitKey(0);
return 0;
}
原图
绕中心点旋转30度的结果
需要注意的是该方法仅适用于水平图像旋转到有角度的图像,至于可以随意旋转角度的方法我现在还不知道如何完成,以后有机会再做.
以上做法还有个最大的缺点是在旋转之后像素大小发生了变化,如果你要对像素操作就会产生很多问题,接下来的代码会将像素固定下来,不过也是针对旋转到一定角度之后再返回到水平位置的代码,具有很大的局限性,研究明白之后再更新其他情况
cv::Mat rotate_arbitrarily_angle1(cv::Mat matSrc, float angle, bool direction,int height,int width) {
float theta = angle * CV_PI / 180.0;
int nRowsSrc = matSrc.rows;
int nColsSrc = matSrc.cols; // 如果是顺时针旋转
if (!direction) theta = 2 * CV_PI - theta; // 全部以逆时针旋转来计算
// 逆时针旋转矩阵
float matRotate[3][3]{ {
std::cos(theta), -std::sin(theta), 0},
{std::sin(theta), std::cos(theta), 0 },
{0, 0, 1} };
float pt[3][2]{
{ 0, nRowsSrc },
{nColsSrc, nRowsSrc},
{nColsSrc, 0} };
for (int i = 0; i < 3; i++) {
float x = pt[i][0] * matRotate[0][0] + pt[i][1] * matRotate[1][0];
float y = pt[i][0] * matRotate[0][1] + pt[i][1] * matRotate[1][1];
pt[i][0] = x; pt[i][1] = y;
}
// 计算出旋转后图像的极值点和尺寸
float fMin_x = std::min(std::min(std::min(pt[0][0], pt[1][0]), pt[2][0]), (float)0.0);
float fMin_y = std::min(std::min(std::min(pt[0][1], pt[1][1]), pt[2][1]), (float)0.0);
float fMax_x = std::max(std::max(std::max(pt[0][0], pt[1][0]), pt[2][0]), (float)0.0);
float fMax_y = std::max(std::max(std::max(pt[0][1], pt[1][1]), pt[2][1]), (float)0.0);
int nRows = cvRound(fMax_y - fMin_y + 0.5) + 1;
int nCols = cvRound(fMax_x - fMin_x + 0.5) + 1;
int nMin_x = cvRound(fMin_x + 0.5);
int nMin_y = cvRound(fMin_y + 0.5);
// 拷贝输出图像
cv::Mat matRet(nRows, nCols, matSrc.type(), cv::Scalar(0));
for (int j = 0; j < nRows; j++) {
for (int i = 0; i < nCols; i++) {
// 计算出输出图像在原图像中的对应点的坐标,然后复制该坐标的灰度值
// 因为是逆时针转换,所以这里映射到原图像的时候可以看成是,输出图像
// 到顺时针旋转到原图像的,而顺时针旋转矩阵刚好是逆时针旋转矩阵的转置
// 同时还要考虑到要把旋转后的图像的左上角移动到坐标原点。
int x = (i + nMin_x) * matRotate[0][0] + (j + nMin_y) * matRotate[0][1];
int y = (i + nMin_x) * matRotate[1][0] + (j + nMin_y) * matRotate[1][1];
if (x >= 0 && x < nColsSrc && y >= 0 && y < nRowsSrc) {
matRet.at<uchar>(j, i) = matSrc.at<uchar>(y, x);
}
}
}
if(direction== false){//当需要顺时针旋转回水平位置时
int x = (matRet.cols -width) / 2;
int y = (matRet.rows -height) / 2;
//width和height是水平条件下图像的宽高
cv::Rect rect(x, y, width, height);
matRet = cv::Mat(matRet,rect);
}
return matRet;
}