1.什么是树形DP?
树形DP是一种利用树型结构进行动态规划的算法。它的基本思想是把树看作一个递归结构,先处理子树,再处理整个树。在树形DP中,我们通过定义状态和状态转移方程,来解决一些与树相关的问题,比如最长路径、最小路径覆盖等等。在实现上,通常采用 DFS 或者 BFS 的方式遍历整棵树,同时记录中间状态,避免重复计算。树形DP是一种高效的算法,常被用于解决树状结构问题,如图论、字符串、计算几何等领域。
2.用C++实现树形DP算法
1.
下面是两个 C++ 实现树形 DP 的例子,其中以计算以节点 1 为根节点的树的最长路径为例。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
vector<int> G[N];
int n, root, ans = N;
int sz[N];
void dfs(int u, int fa) {
sz[u] = 1;
int res = 0;
for (int v: G[u]) {
if (v == fa) continue;
dfs(v, u);
sz[u] += sz[v];
res = max(res, sz[v]);
}
res = max(res, n - sz[u]);
if (res < ans) {
ans = res;
root = u;
}
}
int main() {
cin >> n;
for (int i = 1; i < n; i++) {
int u, v;
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1, 0);
cout << root << endl;
return 0;
}
在这个例子中,我们定义了一个 dp
数组,其中 dp[i]
表示以节点 i
为根的子树的最长路径。在遍历树时,我们递归处理每个子节点,并根据其子节点的 dp
值来更新当前节点的 dp
值。最终得到 dp[1]
即为以节点 1 为根节点的树的最长路径。
2.
下面是一个简单的树形DP算法示例,用C++实现,它解决的问题是对于一个有根树,计算树的重心和子树大小。
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
const int MAXN = 1005;
vector<int> G[MAXN];
int dp[MAXN];
// DFS 遍历树,计算以 root 为根的子树的最长路径
void dfs(int root, int fa) {
dp[root] = 0;
int max1 = 0, max2 = 0;
for (int i = 0; i < G[root].size(); i++) {
int son = G[root][i];
if (son == fa) continue;
dfs(son, root);
int d = dp[son] + 1;
if (d >= max1) {
max2 = max1;
max1 = d;
} else if (d > max2) {
max2 = d;
}
}
dp[root] = max1 + max2; // 更新以 root 为根的子树的最长路径
}
int main() {
int n;
cin >> n;
for (int i = 0; i < n - 1; i++) {
int u, v;
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1, 0);
cout << dp[1] << endl; // 输出计算结果
return 0;
}
整个算法的核心是在 dfs
函数中进行计算。首先初始化当前节点的大小为1,表示节点本身的大小,然后遍历当前节点的所有孩子节点,并递归地计算它们的子树大小。最后,使用当前节点的子树大小和 n - sz[u]
,即除了当前节点子树以外的大小,比较出该节点的重心。
在上面的实现中,使用了一个 vector
数组来存储树边,方便遍历每个节点的邻居节点。在计算完成后,输出重心的编号即可。