深入理解Java虚拟机,学习笔记(五)类加载器

加载与类加载器

之前说到加载有三个步骤:
1.根据类对全限定名来获取类的二进制字节流
2.将字节流中的静态结构转换成方法区的运行时的数据结构
3.在内存中生成一个Class对象,作为访问方法区的类数据的一个入口

类加载是与第一步相关,因为如何获取类的二进制字节流这个动作就被称为“类加载器”。

类与类加载器

类加载器

基本的类加载器有:bootstrap类加载器(启动类加载器、引导类加载器)扩展类加载器应用程序类加载器
bootstrap类加载器: 这个有虚拟机实现,只加载JAVA_HOME/lib 下面的类,如:rt.jar 里面包含的基础类。
扩展类加载器:只加载 JAVA_HOME/lib/ext 下面的类
应用程序类加载器:加载classPath下面的类,也就是我们写的一般类。

同类不同类加载器

不同的类加载器规范了不同区域,每个类加载器都有直接的类命名空间。
即时同名的类被不同加载器加载类那他们也是不同的。例如:
现在有一个类为com.example.bo.Hello 被两个不同的类加载器(A、B)分别加载了,然后他们分别实例化了两个对象 helloA(被类加载器A 加载的Hello实例化的对象)和 helloB(被类加载器B加载的实例化的Hello实例化的对象)
判断: helloA instanceof Hello(被类加载器A加载)true
helloA instanceof Hello (被类加载器B加载) false
同样 helloB对象也是如此。

显示加载与隐式加载

显示加载:类似Class.forName(“XXX”), 或者是获取类加载去加载它,在代码里面有显示声明的。
隐式加载:是由虚拟机来加载的,例如遇到 new 、getStatic、 putStatic、 involeStatic 等字节码指令的时候,类还没加载过则会由虚拟机来加载初始化。

双亲委派模型

在这里插入图片描述
双亲委派模型定义了,一个类被一个类加载器加载,该类加载器会将它委派给父类加载器加载,如果父类加载器加载不了,则把它给父类的子类加载器加载。
这样做的好处就是避免了关键类(基础类或者是需要被共享的类)被不同的类加载加载后,会引起程序的混乱。

破坏双亲委派模型

破坏双亲委派模型并不是破坏类加载器里面的规则,做不到将java.lang.String类由自定义的类加载器加载。

第一次破坏

在双亲委派模型出来之前,已经存在类加载器和抽象类ClassLoader类,用户继承ClassLoader类重写了里面的loadClass方法。
现在的ClassLoader类里面的loadClass的逻辑 就是体现了,双亲委派模型的思想。并且建议用户重写findClass方法。

第二次破坏

因为越基础的类需要越顶层的类加载器来加载,但是顶层的类并不一定都是被引用的,也会有调用用户代码。但是顶层的类加载器并不认识这些代码。
例如:JNDI(java naming and directory interface),如果在代码中硬编码去连接数据库,修改了数据库密码后就要对代码进行重新编写并重启。jndi的目的对资源进行管理和查找,它需要调用独立厂商实现并部署在应用程序对ClassPath下对JNDI接口提供者(SPI,Service Provider Interface)的代码,但是启动类不认识这些“代码”,所以只好请求 线程上下文类加载器。

线程上下文类加载器

java.lang.Thread的一个对象引用,如果没有对他进行设置的话,默认是应用程序类加载器。
Thread.currentThread().getContextClassLoader(); 这句就是获取线程上下文类加载器。
有了这个引用就可以在被bootstrap类加载器加载的类中再去委派给子类加载去加载。虽然这违反了双亲委派模型的初衷。

第三次破坏

用户对程序动态性对追求而导致对,(热替换HotSwap)。
这块对应对技术有OSGI。
因为像现在的系统不再是单机版了,而是把功能分模块来进行编程。每个模块在osgi里面被称为bundle,每个bundle都有自己的类加载器。当需要更换一给bundle时,就把bundle连同类加载器一起换掉以实现代码的热替换。
在osgi环境下,类加载器不在是双亲委派模型中的树状结构,而是复杂的网状结构。
在类请求时,osgi按照下面的顺序进行类搜索:
1)将以java.*开头的类委派给父类加载器加载。
2)否则,将委派列表名单内的类委派给父类加载器加载
3)否则,将Import列表中的类委派给Export这个类的bundle的类加载器加载。
4)否则,查找当前bundle的ClassPath,使用自己的类加载器加载。
5)否则,查找类是否在自己的Fragment Bundle中,如果在,则委派给 Fragment Bundle的类加载器加载。
6)否则,查找Dynamic Import列表的Bundle,委派给对应Bundle的类加载器加载
7)否则,类查找失败。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值