[翻译] 神经网络与深度学习 首页 - Index

原文:Neural Networks and Deep Learning
作者:Michael Nielsen
译者:Xovee
翻译时间:2018年8月
许可:'Creative Commons Attribution-NonCommercial 3.0 Unported License',这意味着你可以免费去复制、分享、在本书的基础上进行创作等,但是不得售卖本书。如果你对商业使用有兴趣,请联系作者License

《神经网络与机器学习》是一本免费的在线书籍。这本书的内容包括:

  1. 神经网络,一种受生物学启发的编程方式,可以让计算机从观察到的数据中进行学习
  2. 深度学习,一种在神经网络中非常强大的技术

神经网络和深度学习最近在许多领域都取得了非常不错的成绩,例如在图像识别、语音识别,以及自然语言处理等。这本书将会教给你许多神经网络和深度学习之中的核心概念。

点击这里获取有关本书的更多细节,点击这里查看译者的话。你也可以直接从第一章开始。

此外,还有配套的 GitHub 仓库,以备本地阅读之需。


目录:
> 首页
译序
关于本书
关于习题和难题
第一章 利用神经网络识别手写数字
第二章 反向传播算法是如何工作的
第三章 提升神经网络学习的效果
第四章 可视化地证明神经网络可以计算任何函数
第五章 为什么深度神经网络难以训练?
第六章 深度学习
附录:有没有一个简单的人工智能算法?
致谢、常见问题

introduction

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是微博博文内容深度学习卷积神经网络的Python实现示例: ```python import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense # 构建数据集 texts = ['微博内容1', '微博内容2', '微博内容3', ...] labels = [1, 0, 1, ...] # 正负样本标签 # 分词、向量化处理 tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=100) # 划分训练集和测试集 indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = np.array(labels) labels = labels[indices] nb_validation_samples = int(0.2 * data.shape[0]) x_train = data[:-nb_validation_samples] y_train = labels[:-nb_validation_samples] x_test = data[-nb_validation_samples:] y_test = labels[-nb_validation_samples:] # 构建模型 embedding_dim = 100 model = Sequential() model.add(Embedding(5000, embedding_dim, input_length=100)) model.add(Conv1D(128, 5, activation='relu')) model.add(GlobalMaxPooling1D()) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 模型训练 model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test)) ``` 以上代码中,我们使用Keras框架实现了一个简单的卷积神经网络模型,包括一个嵌入层、一个卷积层、一个全局最大池化层和一个输出层。嵌入层将文本数据向量化,卷积层提取特征,全局最大池化层选取最重要的特征,输出层进行二分类预测。模型使用Adam优化器和二分类交叉熵损失函数进行训练。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值