自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Xovee

个人主页:xovee.cn

翻译 [翻译] 神经网络与深度学习 第三章 提升神经网络学习的效果 - Chapter 3 Improving the way neural networks learn

主要内容:交叉熵代价函数、过拟合和正则化、权值初始化、重温手写识别数字(代码)、如何选择神经网络的超参数及其他技巧。

2018-12-30 12:12:27 536 0

翻译 [翻译] 神经网络与深度学习 第二章 反向传播算法是如何工作的 - Chapter 2 How the backpropagation algorithms works

主要内容:关于代价函数的两个假设、阿达玛积、反向传播背后的四个基础公式、四个基础公式的证明、反向传播算法和反向传播算法的代码。

2018-12-26 19:43:21 332 0

翻译 [翻译] 神经网络与深度学习 第一章 利用神经网络识别手写数字 - Chapter 1 Using neural nets to recognize handwritten digits

主要内容:感知机、Sigmoid 神经元、神经网络的结构、用一个简单的网络来分类手写数字、用梯度下降来学习、实现我们用来分类数字的网络、靠近深度学习。

2018-12-17 21:29:44 554 2

原创 Use NetworkX to create graphs and use Matplotlib or Gephi to show it

In this article I will simply introduce: 1) NetworkX, use it to create a graph; 2) Matplotlib and Gephi, show the graph we created.

2018-12-04 16:34:29 178 2

提示
确定要删除当前文章?
取消 删除