机器学习实验和大作业课程设计
文章平均质量分 91
这是一个机器学习专栏,我们将讨论机器学习的基础知识、常用算法、实践技巧以及最新研究进展。1.决策树
2.Logistic 回归
3.支持向量机
4.随机森林
我们将使用Python作为主要的编程语言,并使用常见的机器学习库。如果您有任何问题,请在评论区留言。
黎明的前夜
今天比昨天好一点,明天比今天好一点。
展开
-
机器学习 城市空气质量AQI的分析与预测
本文针对江西省南昌市2022年空气质量问题,采用各种机器学习算法实现其分类、知识、预测等。文中采用了基于SVM的图像分类或归类、深度学习模型LSTM、KNN算法、决策树、随机森林和线性回归分析等方法,对南昌市空气质量进行了研究和预测,并综合分析了各种算法的优缺点和适用性,为南昌市及相关决策部门提供了有效的参考建议。原创 2023-06-03 13:36:04 · 7470 阅读 · 29 评论 -
机器学习实验三 参数调优 优化模型算法
机器学习实验报告实验题目: 优化算法 ## 一、实验目的:1 掌握迭代优化算法的基本框架2 掌握随机梯度下降和坐标轴下降算法## 二、实验步骤:1.随机梯度下降:①岭回归动量法学习率自适应②Logistic回归(L2正则)两类分类多类分类2.坐标轴下降:Lasso回归原创 2023-05-08 11:33:44 · 1577 阅读 · 0 评论 -
机器学习实验二 K折交叉验证找最佳K值并可视化分析
一、实验目的:(1)K折交叉验证是一种常用的模型评估方法,它可以在有限的数据下充分利用数据集,提高模型精度和泛化能力。K折交叉验证将数据集分成K个互不重叠的子集,每次选取其中一个子集作为测试集,剩余K-1个子集作为训练集,然后计算模型在测试集上的误差,重复该过程K次,最终得到K个误差值的平均数作为模型的性能指标。(2)寻找最佳的K值可以通过在一定范围内遍历K值,比较不同K值下模型的性能指标来确定最佳的K值。比如,可以从2开始尝试不同的K值,直到最大的K值等于数据集大小。通常情况下,K的取值范围应该保证原创 2023-05-04 18:28:47 · 2491 阅读 · 0 评论 -
机器学习实验一 数据感知及可视化
一、实验目的:1.建立对机器学习数据集的感性认识2.掌握利用numpy创建矩阵,以及进行基本矩阵计算的方法二、实验步骤:① 随机生成线性回归数据集② 随机生成线性可分的两类分类数据集③ 随机生成线性可分的多类分类数据集样本标签为独热向量样本标签为标量原创 2023-05-04 18:19:23 · 819 阅读 · 1 评论