深度学习
深度学习技术,CNN,LSTM
爱编程的小金毛球球
今日事今日毕
展开
-
Mac M1 Max配置torch-geometric等深度学习库
都需要较长的安装时间。原创 2024-08-27 00:13:47 · 378 阅读 · 0 评论 -
实验记录:可能造成深度学习模型训练过程中准确率振荡的原因
可能造成深度学习模型训练过程中准确率振荡的原因有哪些原创 2023-12-17 20:11:34 · 2676 阅读 · 0 评论 -
实验记录:深度学习模型收敛速度慢有哪些原因
如果学习率过大,可能会导致模型在训练过程中的振荡,进而影响到收敛速度;在深层网络中,梯度可能会消失或爆炸,导致模型无法进行有效的参数更新,进而影响到收敛速度。如果权重初始化不合适,可能会导致模型在训练初期就陷入不良的局部最小值,从而影响到收敛速度。如果模型在训练数据上过度拟合,可能会导致泛化能力差,从而影响到收敛速度。过于复杂或过于简单的模型结构都可能导致训练困难,进而影响到收敛速度。如果训练数据存在异常值、缺失值或标签错误等问题,可能会影响到模型的训练效果,从而影响到收敛速度。原创 2023-12-17 22:44:36 · 2454 阅读 · 0 评论 -
实验记录:模型训练时loss为INF(无穷大)
在某些情况下,由于数值不稳定性,梯度下降算法可能会产生非常大的梯度,从而导致损失值变得非常大。权重的初始化可能不合适,例如,如果权重的初始值过大或过小,可能会导致计算过程中的数值不稳定。模型结构可能存在问题,例如,某些层的权重可能设置得过大或过小,导致计算过程中的数值不稳定。如果学习率设置得过高,梯度更新可能会变得非常大,从而在某些迭代中导致损失值变得非常大。输入数据可能包含异常值或缺失值,这可能导致模型在计算过程中遇到问题。在计算过程中,如果尝试将一个数除以零,将导致无穷大的损失值。原创 2023-12-14 17:32:59 · 1038 阅读 · 0 评论 -
深度学习模型在训练集上表现良好,但在测试集上表现较差,可能原因
深度学习模型在训练集上表现良好,测试集上效果不好,可能存在的问题以及改进措施原创 2023-09-16 15:13:04 · 6824 阅读 · 1 评论 -
代码解读:y.view(y.size(0), -1)---tensor张量第一维保持不变,其余维度展平
代码解读:y.view(y.size(0), -1)原创 2023-09-15 16:28:29 · 345 阅读 · 0 评论