- 博客(11)
- 收藏
- 关注
原创 对比赛方给出的任务进行分析——天池医疗对话意图识别
IMCS-MGR 任务的目标是自动从话语中 识别医生或者患者的意图,该任务的输入输出示例如下。Input(对话中的某个话语)Output(意图)医生:你好,咳嗽是连声咳吗?有痰吗?有没流鼻涕,鼻塞?
2025-03-17 16:30:40
833
1
原创 《使用卷积进行泛化》第八章总结
用一个不同的线性操作替换神经网络单元中稠密的、全连接的仿射变换。实现局部模式对输出的影响,满足神经网络的平移不变性需求。大大减少模型参数数量,参数数量取决于卷积核大小和使用的卷积核(输出通道)个数,而非图像像素数量。局部性:对图像局部像素进行操作,通过核函数与输入图像局部区域做标量积运算。平移不变性:在图像不同位置使用相同核权重,保证权重在不同位置对局部模式响应一致。
2025-02-20 16:25:58
1027
原创 《使用神经网络拟合数据》第六章
其中x是输入,w是权重或比例因子,b是偏置或偏移量,f是激活函数,设为双曲正切,这里是tanh 函数。x和o可以是简单的标量,或向量值(意思是保留许多标量值),w 可以是单个标量或矩阵,而b是标量或向量(输入的维度和权重必须匹配)。一个模块可以有一个或多个参数实例作为属性,这些参数实例是torch,它们的值在训练过程中得到了优化(线性模型中的w和b)。用神经网络替代线性模型作为逼近函数,构建简单神经网络,包含线性模块和激活层,激活层增加模型容量,不同层组合产生输出值。w_0是一个矩阵,x是一个向量。
2025-02-08 13:17:31
742
原创 《学习的机制》第五章总结
为计算损失对参数的导数,对于线性模型和平方损失函数,可应用链式法则计算,得到损失关于参数的导数表达式,进而定义梯度函数,返回关于参数的损失梯度。使用训练迭代(epoch)的概念,在每个迭代周期更新所有训练样本的参数,通过固定次数迭代或根据参数变化情况停止迭代,以优化模型参数。模型在训练集上损失小,但在独立的验证集上损失高,即模型在训练数据上表现好,但泛化能力差,无法在新数据上有效运行。参数,PyTorch 会跟踪该张量的操作历史,构建计算图,并自动计算梯度,梯度值存储在张量的grad属性中。
2025-02-05 15:47:21
865
原创 《使用Torch表征真实数据》第四章总结
将异构数据编码为浮点数torch,如葡萄酒质量数据集(包含葡萄酒化学特征和感官质量评分)可从 GitHub 获取。
2025-01-22 01:35:58
747
原创 《PyTorch基本的数据结构——张量Torch》第三章总结
在深度学习中,张量是 PyTorch 中用来表示数据的构建块,可将向量和矩阵推广到任意维度,维度与表示张量中标量值的索引数量一致。与 Python 列表不同,Python 列表是内存中单独分配的 Python 对象集合,而 PyTorch 张量或 NumPy 数组通常是连续内存块的视图,包含未装箱的 C 数字类型,存储效率更高。
2025-01-20 23:41:06
707
原创 《探索图像识别的神奇利器 —— 预训练网络》第二章总结
将输入图像缩放到256×256个像素,围绕中心将图像裁剪为224×224个像素,并将其转换为一个张量,对其RGB分量(红色、绿色和蓝色)进行归一化处理,使其具有定义的均值和标准差。张量是一种PyTorch多维数组,在本例中,是一个包含颜色、高度和宽度的三维数组。
2025-01-18 00:10:59
843
原创 《探索PyTorch:深度学习的得力助手》第一章总结
在当今的人工智能领域,深度学习无疑是最热门的话题之一,而PyTorch作为深度学习框架中的佼佼者,正受到越来越多开发者和研究者的青睐。哪么,什么是PyTorch呢?
2025-01-17 20:01:12
580
原创 构建哈夫曼树——成立最小堆
1.定义了字符数组 chars 和对应的频率数组 freqs。2.遍历数组,为每个字符创建一个哈夫曼树节点,分配内存并初始化其数据、频率和子节点。3.将节点插入到最小堆 minh 中。如下图:创建最小堆,再将'Y', 'X', 'R', 'I','A','O','N'(去重后)进行遍历。
2024-12-27 14:37:47
338
原创 数据结构-——链表
链表是一种常见的线性数据结构,由一系列节点组成。每个节点包含两部分:数据域和指针域。数据域用于存储节点的实际数据,在单链表中:指针域则存储指向下一个节点的指针;在双链表中:指针域指向前一个节点和下一个节点的指针。链表的第一个节点通常称为头节点,最后一个节点的指针指向空(NULL),表示链表的结束。
2024-12-23 21:02:57
787
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人