目录
一、实验原理
1.编码
-
流程图
-
原理
LZW编码是围绕称为词典的转换表来完成的。LZW编码器通过管理这个词典完成输入与输出之间的转换。LZW编码器的输入是字符流,字符流可以是用8位ASCII字符组成的字符串,而输出是用n位(例如12位)表示的码字流。
步骤:
步骤1:将词典初始化为包含所有可能的单字符,当前前缀P初始化为空。
步骤2:当前字符C=字符流中的下一个字符。
步骤3:判断P+C是否在词典中。
(1)如果“是”,则用C扩展P,即让P=P+C,返回到步骤2。
(2)如果“否”,则
输出与当前前缀P相对应的码字W;
将P+C添加到词典中;
令P=C,并返回到步骤2。
2.解码
-
流程图
-
原理
步骤1:在开始译码时词典包含所有可能的前缀根。
步骤2:令CW:=码字流中的第一个码字。
步骤3:输出当前缀-符串string.CW到码字流。
步骤4:先前码字PW:=当前码字CW。
步骤5:当前码字CW:=码字流的下一个码字。
步骤6:判断当前缀-符串string.CW 是否在词典中。
(1)如果”是”,则把当前缀-符串string.CW输出到字符流。
当前前缀P:=先前缀-符串string.PW。
当前字符C:=当前前缀-符串string.CW的第一个字符。
把缀-符串P+C添加到词典。
(2)如果”否”,则当前前缀P:=先前缀-符串string.PW。
当前字符C:=当前缀-符串string.CW的第一个字符。
输出缀-符串P+C到字符流,然后把它添加到词典中。
步骤7:判断码字流中是否还有码字要译。
(1)如果”是”,就返回步骤4。
(2)如果”否”,结束。
二、实验代码(含注释)
bitio.h
/*
* Declaration for bitwise IO
*
* vim: ts=4 sw=4 cindent
*/
#ifndef __BITIO__
#define __BITIO__
#include <stdio.h>
//二进制文件结构体
typedef struct{
FILE *fp; //输出文件指针
unsigned char mask; //按位写入字节时的掩码
int rack; //类似于缓存,每写完8位,将rack输出到文件中
}BITFILE;
BITFILE *OpenBitFileInput( char *filename);
BITFILE *OpenBitFileOutput( char *filename);
void CloseBitFileInput( BITFILE *bf);
void CloseBitFileOutput( BITFILE *bf);
int BitInput( BITFILE *bf);
unsigned long BitsInput( BITFILE *bf, int count);
void BitOutput( BITFILE *bf, int bit);
void BitsOutput( BITFILE *bf, unsigned long code, int count);
#endif // __BITIO__
bitio.c
/*
* Definitions for bitwise IO
*
* vim: ts=4 sw=4 cindent
*/
#include <stdlib.h>
#include <stdio.h>
#include "bitio.h"
//打开要输入的文件
BITFILE *OpenBitFileInput( char *filename){
BITFILE *bf;
bf = (BITFILE *)malloc( sizeof(BITFILE));
if(NULL == bf)
return NULL;
if(NULL == filename)
bf->fp = stdin;
else
bf->fp = fopen( filename, "rb");
if( NULL == bf->fp)
return NULL;
bf->mask = 0x80;
bf->rack = 0;
return bf;
}
//以二进制方式打开要输出的文件
BITFILE *OpenBitFileOutput( char *filename){
BITFILE *bf;
bf = (BITFILE *)malloc( sizeof(BITFILE));
if(NULL == bf)
return NULL;
if( NULL == filename)
bf->fp = stdout;
else
bf->fp = fopen( filename, "wb"); //以二进制只写的方式打开文件
if(NULL == bf->fp)
return NULL;
bf->mask = 0x80; //初始化掩码为1000 0000
bf->rack = 0; //初始化rack为0
return bf;
}
//关闭读入文件比特流
void CloseBitFileInput( BITFILE *bf){
fclose(bf->fp);
free(bf);
}
//输出剩下未输出的二进制数字,关闭二进制输出文件
void CloseBitFileOutput( BITFILE *bf){
// Output the remaining bits
if( 0x80 != bf->mask)
fputc( bf->rack, bf->fp);
fclose(bf->fp);
free(bf);
}
//得到输出文件中下一位二进制数(从右向左)
int BitInput( BITFILE *bf){
int value;
if( 0x80 == bf->mask){
bf->rack = fgetc( bf->fp);
if( EOF == bf->rack){
fprintf(stderr, "Read after the end of file reached\n");
exit( -1);
}
}
value = bf->mask & bf->rack;
bf->mask >>= 1;
if( 0 == bf->mask)
bf->mask = 0x80;
return( (0==value)?0:1);
}
//从输入文件中得到数据
unsigned long BitsInput( BITFILE *bf, int count){
unsigned long mask;
unsigned long value;
mask = 1L << (count-1);
value = 0L;
while( 0!=mask){
if( 1 == BitInput( bf))
value |= mask;
mask >>= 1;
}
return value;
}
void BitOutput( BITFILE *bf, int bit){
//如果bit为1,则在rack下一个未写码位置由0变为1。如果bit为0,则rack不作处理,mask直接向右移位,代表下一个未写码位置为0
if( 0 != bit)
bf->rack |= bf->mask;
bf->mask >>= 1;
//每次mask移位后,都要判断mask是否溢出为0。若溢出,则代表成功累计写入八位,即该字节已写满。
//直接输出rack后,rack初始化为0,mask初始化为1000 0000。
if( 0 == bf->mask){ // eight bits in rack
fputc( bf->rack, bf->fp);
bf->rack = 0;
bf->mask = 0x80;
}
}
//按位输出数据到输出文件中
void BitsOutput( BITFILE *bf, unsigned long code, int count){
unsigned long mask;
mask = 1L << (count-1);
while( 0 != mask){ //mask为0时,说明code共count位数字输出完毕
BitOutput( bf, (int)(0==(code&mask)?0:1)); //按位输出code
mask >>= 1; //掩码向右移位
}
}
#if 0
int main( int argc, char **argv){
BITFILE *bfi, *bfo;
int bit;
int count = 0;
if( 1<argc){
if( NULL==OpenBitFileInput( bfi, argv[1])){
fprintf( stderr, "fail open the file\n");
return -1;
}
}else{
if( NULL==OpenBitFileInput( bfi, NULL)){
fprintf( stderr, "fail open stdin\n");
return -2;
}
}
if( 2<argc){
if( NULL==OpenBitFileOutput( bfo, argv[2])){
fprintf( stderr, "fail open file for output\n");
return -3;
}
}else{
if( NULL==OpenBitFileOutput( bfo, NULL)){
fprintf( stderr, "fail open stdout\n");
return -4;
}
}
while( 1){
bit = BitInput( bfi);
fprintf( stderr, "%d", bit);
count ++;
if( 0==(count&7))fprintf( stderr, " ");
BitOutput( bfo, bit);
}
return 0;
}
#endif
lzw.c
/*
* Definition for LZW coding
*
* vim: ts=4 sw=4 cindent nowrap
*/
#include <stdlib.h>
#include <stdio.h>
#include "bitio.h"
#define MAX_CODE 65535
struct {
int suffix; //尾缀字符
int parent, firstchild, nextsibling; //母节点,第一个孩子节点,下一个兄弟节点
} dictionary[MAX_CODE+1];
int next_code;
int d_stack[MAX_CODE]; // stack for decoding a phrase
#define input(f) ((int)BitsInput( f, 16))
#define output(f, x) BitsOutput( f, (unsigned long)(x), 16)
int DecodeString( int start, int code);
void InitDictionary( void); //初始化词典
void PrintDictionary( void){
int n;
int count;
for( n=256; n<next_code; n++){
count = DecodeString( 0, n);
printf( "%4d->", n);
while( 0<count--) printf("%c", (char)(d_stack[count]));
printf( "\n");
}
}
int DecodeString( int start, int code){
int count; //表示数组下标
count = start; //设置初始下标
while (code >= 0) { //当code = -1时,已经到达树根
d_stack[count] = dictionary[code].suffix; //将下标为code节点中的后缀字母放置于数组相应位置
code = dictionary[code].parent; //节点上移至母节点处
count++; //数组下标+1
}
return count; //返回数组下标,即字符总数
}
//初始化词典
void InitDictionary( void){
int i;
for( i=0; i<256; i++){
dictionary[i].suffix = i;
dictionary[i].parent = -1; //表示不存在
dictionary[i].firstchild = -1;
dictionary[i].nextsibling = i+1;
}
dictionary[255].nextsibling = -1;
next_code = 256;
}
/*
* Input: string represented by string_code in dictionary,
* Output: the index of character+string in the dictionary
* index = -1 if not found
*/
//查找词典中是否有字符串
int InDictionary( int character, int string_code){// string_code:前缀字符
int sibling;
if( 0 > string_code) //如果是单个字符
return character;
sibling = dictionary[string_code].firstchild; //找到第一个孩子节点
while( -1 < sibling){ //从第一个孩子节点开始依次对比所有孩子节点
if( character == dictionary[sibling].suffix) return sibling; //如果该孩子节点的尾缀字符与C相同,则找到并返回该节点
sibling = dictionary[sibling].nextsibling; //指向下一个兄弟节点,继续判断C是否是该节点的子节点
}
return -1; //词典中没有PC则返回-1
}
//把新的字符串加入到字典中
void AddToDictionary( int character, int string_code){
int firstsibling, nextsibling;
if( 0>string_code) //如果是单个字符
return;
dictionary[next_code].suffix = character; //C
dictionary[next_code].parent = string_code; //P
dictionary[next_code].nextsibling = -1; //不存在下一个兄弟节点
dictionary[next_code].firstchild = -1; //不存在孩子节点
firstsibling = dictionary[string_code].firstchild;
if( -1<firstsibling){ // the parent has child
nextsibling = firstsibling; //找到P的第一个孩子节点
while( -1<dictionary[nextsibling].nextsibling ) //该孩子节点存在下一个兄弟节点
nextsibling = dictionary[nextsibling].nextsibling; //指向下一个兄弟节点
dictionary[nextsibling].nextsibling = next_code; //找到最后一个,将nextcode作为该节点的下一个兄弟节点
}else{// no child before, modify it to be the first
dictionary[string_code].firstchild = next_code; //若没找到firstchild,nextcode就是firstchild
}
next_code ++;
}
//编码部分
void LZWEncode( FILE *fp, BITFILE *bf){
int character; //C
int string_code; //P
int index; //PC
unsigned long file_length;
fseek( fp, 0, SEEK_END); //指针指向文件尾
file_length = ftell( fp); //计算文件长度
fseek( fp, 0, SEEK_SET); //指针重新指向文件起始
BitsOutput( bf, file_length, 4*8); //写文件长度
InitDictionary(); //初始化词典
string_code = -1; //P为空
while( EOF!=(character=fgetc( fp))){ //往后读一个字符,判断PC是否在字典里
index = InDictionary( character, string_code); //判断PC是否在字典里
if( 0<=index){ // string+character in dictionary
string_code = index; //PC→P
}else{ // string+character not in dictionary
output( bf, string_code); //输出P
if( MAX_CODE > next_code){ // free space in dictionary
// add string+character to dictionary
AddToDictionary( character, string_code);
}
string_code = character; //C→P
}
}
output( bf, string_code); //输出P
}
//解码部分
void LZWDecode( BITFILE *bf, FILE *fp){
int new_code, last_code;
int character = NULL;
int phrase_length; //输出字符串的长度
unsigned long file_length; //输出文件长度
file_length = BitsInput(bf, 4 * 8);//输入文件起始处存储输出文件的大小
if (-1 == file_length)
file_length = 0;
InitDictionary(); //初始化词典
last_code = -1; //初始时没有旧编码,故用-1表示不存在
while (file_length > 0) //还没有读到文件末尾
{
new_code = input(bf); //读取新编码
if (new_code < next_code) //新编码在词典里
{
//遍历新编码new_code所在树,将new_code对应字符串放置于d_stack栈数组中。
//前缀放于栈底方向,后缀位于栈顶d_stack[0]。得到字符总数,即要输出字符串的长度
phrase_length = DecodeString(0, new_code);
}
else //新编码不在词典中
{
d_stack[0] = character; //后缀为character
phrase_length = DecodeString(1, last_code); //前缀为旧编码last_code
}
//当新读取的编码不存在于字典中时,character为旧编码last_code的首字母;
//当新读取的编码字典中存在时,character为新编码new_code的首字母。
character = d_stack[phrase_length - 1];
//此时d_stack中:
//新读取的编码不存在于字典中时:旧编码last_code对应字符串+last_code对应首字母。
//当新读取的编码存在于字典中时:新编码new_code对应字符串
while (0 < phrase_length) //输出d_stack中所存放的字符串
{
phrase_length--;
fputc(d_stack[phrase_length], fp);
file_length--;
}
if (MAX_CODE > next_code)// free space in dictionary
{
// add string+character to dictionary
AddToDictionary(character, last_code);
}
last_code = new_code; //新编码变为旧编码
}
}
int main( int argc, char **argv){
FILE *fp;
BITFILE *bf;
if( 4>argc){
fprintf( stdout, "usage: \n%s <o> <ifile> <ofile>\n", argv[0]);
fprintf( stdout, "\t<o>: E or D reffers encode or decode\n");
fprintf( stdout, "\t<ifile>: input file name\n");
fprintf( stdout, "\t<ofile>: output file name\n");
return -1;
}
if( 'E' == argv[1][0]){ // do encoding
fp = fopen( argv[2], "rb");
bf = OpenBitFileOutput( argv[3]);
if( NULL!=fp && NULL!=bf){
LZWEncode( fp, bf);
fclose( fp);
CloseBitFileOutput( bf);
fprintf( stdout, "encoding done\n");
}
}else if( 'D' == argv[1][0]){ // do decoding
bf = OpenBitFileInput( argv[2]);
fp = fopen( argv[3], "wb");
if( NULL!=fp && NULL!=bf){
LZWDecode( bf, fp);
fclose( fp);
CloseBitFileInput( bf);
fprintf( stdout, "decoding done\n");
}
}else{ // otherwise
fprintf( stderr, "not supported operation\n");
}
return 0;
}
三、实验结果
1.简单的txt文本测试编解码算法代码
编码前:
编码后:
解码后:
2.对十种不同格式的文件进行编码压缩,查看压缩效率
原始文件类型 | 原始文件大小 | 压缩后文件的大小 | 压缩效率 |
bmp | 1.97MB | 2.39MB | -21.32% |
docx | 391KB | 498KB | -27.37% |
jpg | 82.7KB | 117KB | -41.48% |
mp3 | 55.4KB | 79.5KB | -43.50% |
1.17MB | 1.34MB | -14.53% | |
png | 998KB | 1.21MB | -24.85% |
pptx | 1.37MB | 1.70MB | -24.09% |
txt | 9Bytes | 16Bytes | -77.78% |
wav | 62.5KB | 69.0KB | -10.40% |
yuv | 43.5MB | 29.1MB | 33.10% |
四、实验分析
1.LZW算法适合用于压缩较大的文字类型文件:文件中文字的冗余度越高,压缩效率越好;相反,在字符串重复概率低时,影响压缩效率。
2.对于一些已经压缩的文件类型(例如png),由于其压缩编码已经文件中大部分相关性去除,每个符号近似于等概分布,其信息熵接近于每符号最大值。在这种情况下文件中很少出现重复字符串,严重影响LZW算法效率,甚至压缩效率为负数。