卡特兰数--

卡特兰数(Catalan Number)

 Go 语言动态规划实现

func Catalan(n int) int {
	dp := make([]int, n+1)
	dp[0] = 1
	dp[1] = 1

	for i := 2; i <= n; i++ {
		for j := 1; j <= i; j++ {
            dp[i] += dp[j-1]*dp[i-j]
		}
	}
    return dp[n]
}

🎯 卡特兰数的动态规划递推公式

🔁 递推公式(动态规划版)

卡特兰数满足以下递推关系:

C₀ = 1
Cₙ = C₀×Cₙ₋₁ + C₁×Cₙ₋₂ + C₂×Cₙ₋₃ + ... + Cₙ₋₁×C₀

也可以写作:

Cₙ = ∑ (Cᵢ × Cₙ₋₁₋ᵢ),其中 i 从 0 到 n-1


应用场景

1. 括号匹配问题

在一个合法的括号序列中:

  • 左右括号数量相等;

  • 任意位置,左括号数量不少于右括号。

例如:

  • 合法:(), (()), ()()

  • 非法:()), ()))(()

n 对括号的合法排列数是第 n 个卡特兰数。


2. 出栈序列问题

假设一个栈初始为空,有 n 个元素依次入栈。

不同的出栈序列数量为第 n 个卡特兰数。

例如:当 n = 3 时,元素 1, 2, 3 入栈,可能的出栈序列有:

  • 123

  • 132

  • 213

  • 231

  • 321

共 5 种,即 C₃ = 5。


3. 二叉树形态问题(二叉搜索树同样适用)(对于二叉搜索树):节点带有唯一编号(1~n)

由 n 个节点构成的不同形态的二叉树数量为第 n 个卡特兰数。

例如:当 n = 3 时,有 5 种不同形态的二叉树。


4. 凸多边形的三角剖分问题

将一个凸 n+2 边形,用 n−1 条不相交对角线划分成 n 个三角形。

剖分方法数为第 n 个卡特兰数。

例如:当 n = 3(对应五边形),有 5 种三角剖分方法。


5. 路径问题(Dyck Path)

在 n×n 方格上,从左下角走到右上角:

  • 只能向右或向上走;

  • 且不能穿过对角线。

满足条件的路径数量为第 n 个卡特兰数。

例如:当 n = 3 时,有 5 条合法路径。


6. 矩阵乘法运算顺序问题

对 n 个矩阵 A₁A₂…An,根据结合律加括号,不改变顺序:

不同的乘法顺序数为第 n−1 个卡特兰数。

例如:A₁A₂A₃A₄ 的括号组合方式有:

  • (A₁(A₂(A₃A₄)))

  • (A₁((A₂A₃)A₄))

  • ((A₁A₂)(A₃A₄))

  • ((A₁(A₂A₃))A₄)

  • (((A₁A₂)A₃)A₄)

共 5 种,即 C₃ = 5。


7. 圆上点连线问题

在圆上选择 2n 个点,两两连线且不允许线段相交。

不同连线方式数量为第 n 个卡特兰数。

例如:n = 3(6 个点)时,有 5 种不相交连线方法。


8. 投票顺序问题

有 2n 个人投票,其中 n 票赞成、n 票反对。

要求:投票过程中任意时刻赞成票不少于反对票。

满足条件的投票顺序数为第 n 个卡特兰数。

例如:n = 3 时,合法顺序包括:

  • 赞成赞成赞成反对反对反对

  • 赞成赞成反对赞成反对反对

  • 等等,共 5 种。


9. 正则表达式的合法匹配树结构

将正则表达式转换为语法树时,不同的合法匹配结构数量为第 n 个卡特兰数。
例如:对于带有 |(或)、*(重复)、括号等结构的正则,其合法解析方式的总数可用卡特兰数计数。


10. AVL 树构建数量(高度平衡二叉树)

给定 n 个节点,构建满足 AVL 高度平衡条件的二叉树的方案数,在某些简化条件下也呈现卡特兰数的增长趋势。
虽然不是完全等价,但当我们限制树高度差时,其子问题的递推方式与卡特兰数类似。


11. 全括号表达式(完全二叉运算树)

对于形如 a * b * c * d 的操作数序列,在不改变操作数顺序的前提下,通过加括号来确定乘法顺序的方式有 n-1 个卡特兰数种。

例如,对于 a * b * c * d

  • ((a * (b * (c * d))))

  • (a * ((b * c) * d))

  • ((a * b) * (c * d))

  • (((a * b) * c) * d)

  • ((a * (b * c)) * d)

共 5 种,即 C₃ = 5。


12. 单调栈中构造不下降子序列的方式

在使用栈构造特定不下降子序列(如栈排序问题)时,某些构造路径数也可以转化为卡特兰数的问题。
这类问题通常是判断合法出栈序列、不交叉子序列或序列递归划分,其本质与卡特兰数的组合结构密切相关。

<think>好的,我现在要回答用户关于卡特兰的概念和应用的问题。首先,我需要回顾一下卡特兰的基本定义和常见应用场景。根据用户提供的引用内容,卡特兰在组合学和计算机科学中有很多应用,比如网格路径、括号匹配、进出栈问题、二叉树构成以及凸多边形划分等。 首先,我应该明确卡特兰的定义。根据引用[2],卡特兰是一组自然序列,以法国学家欧仁·卡特兰命名,常用于组合学中。引用[4]提到,卡特兰的第n项(记作$C_n$)表示许多组合问题的解的量。所以,我需要给出卡特兰学表达式,通常使用递推公式或闭式公式来表示。根据引用[1]和[4],闭式公式是$C_n = \frac{1}{n+1}\binom{2n}{n}$,而递推公式则是$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$,初始条件$C_0 = 1$。不过,用户提供的引用中没有直接提到递推公式,但根据我的知识,这是正确的,所以可能需要确认。不过引用[5]提到了证明方法,可能包含递推关系。 接下来是应用部分。根据引用[5],网格路径问题、括号匹配、进出栈问题、二叉树构成和凸多边形划分都是经典应用。我需要为每个应用提供一个简明的例子,可能的话结合学表达式或图示,但由于用户要求使用行内学表达式,我需要用LaTeX来表示,比如在网格路径中,路径由$C_n$给出,而括号匹配的量也是$C_n$。此外,引用[2]提到的栈排序问题、二叉树构造等也需涵盖。 用户还提到卡特兰的算法实现,但引用中主要提到的是阶乘和除法可能导致值溢出和精度问题(引用[3])。因此,在算法部分,我需要提到直接计算闭式公式可能带来的问题,以及可能的优化方法,比如动态规划或递推法来计算卡特兰,以避免大运算的问题。 然后,我需要考虑生成相关问题。根据示例中的结构,问题应围绕卡特兰的性质、应用、计算方法、优化等展开。例如,如何计算卡特兰、递推关系、应用场景的不同例子,以及算法实现的优化等。 在组织内容时,要确保符合系统级指令:行内学表达式用$...$,独立公式用$$...$$,正确的中文回答,引用标识自然添加。例如,在描述闭式公式时使用独立公式: $$C_n = \frac{1}{n+1} \binom{2n}{n}$$ 同时,引用需要正确标注,比如在提到应用场景时引用[5],在提到算法缺点时引用[3]。 检查是否有遗漏的信息,比如卡特兰的前几项值,引用[4]提到前几项为1, 1, 2, 5, 14等,可以加入基础概念部分。同时,引用[1]和[2]强调了组合学中的应用,需要整合这些内容。 最后,确保回答结构清晰,分点说明概念、应用示例、算法实现,并生成相关问题。可能还需要注意避免直接复制引用内容,而是用自己的话组织,同时正确标注引用来源。</think>### 卡特兰的概念与应用 #### 一、基础概念 **卡特兰**(Catalan numbers)是组合学中的自然序列,记为$C_n$,其定义如下: $$C_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \geq 0)$$ 前几项为:$C_0=1$, $C_1=1$, $C_2=2$, $C_3=5$, $C_4=14$等[^4]。它也可以通过递推公式计算: $$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}, \quad C_0=1$$ #### 二、经典应用示例 1. **网格路径问题** 在$n \times n$网格中,从$(0,0)$到$(n,n)$,每次只能向右或向上移动,且路径不跨越对角线的路线为$C_n$[^5]。例如,$n=2$时路径为2(对应$C_2$)。 2. **括号匹配问题** $n$对括号能组成的合法序列量为$C_n$。例如,3对括号有5种合法组合(对应$C_3=5$)[^5]。 3. **进出栈序列问题** 给定$n$次进栈和出栈操作,合法的操作序列为$C_n$。例如,3次操作有5种合法序列[^2]。 4. **二叉树构成问题** $n+1$个叶子节点能构成的不同形态的满二叉树量为$C_n$[^5]。 5. **凸多边形划分** 凸$n+2$边形用不相交的对角线划分为三角形的方法为$C_n$。 #### 三、算法实现与注意事项 直接计算闭式公式时,阶乘$\binom{2n}{n}$可能导致值溢出(如$n=20$时结果超过$10^{18}$)。改进方法包括: - **递推法**:利用递推公式$C_{n+1} = \sum_{i=0}^n C_i C_{n-i}$逐步计算。 - **动态规划**:存储中间结果,避免重复计算。 ```python def catalan(n): dp = [0] * (n+1) dp[0] = 1 for i in range(1, n+1): for j in range(i): dp[i] += dp[j] * dp[i-j-1] return dp[n] ``` #### 四、应用特点与局限性 - **优点**:统一解决多种组合问题,学性质优美。 - **缺点**:直接计算闭式公式时可能因阶乘导致值溢出或精度丢失[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值