Algorithm
叶在风间
Linux入门C入门AldebaranNAO入门OpenCV入门
展开
-
聚类与神经网络
51 C-均值算法:是动态聚类方法中的一个典型方法。其目的是将一数据集, 按自然密集程度划分成C个聚类,它的准则函数是对所有C个聚类中每个数据到其各自均值的距离平方和的总和为最小。计算距离的最简单形式是欧式距离。但也可使用其它形式的距离。迭代过程是计算这个数据, 从现属聚类转移至其它聚类, 是否能使准则函数值减小为依据,将该数据转移至合适聚类,直至这种数据转移不再发生为止。在数据转移过程中各个转载 2013-12-23 21:16:55 · 4786 阅读 · 0 评论 -
基于密度的聚类
定义: 1. 对于空间中的一个对象,如果它在给定半径e的邻域中的对象个数大于密度阀值MinPts,则该对象被称为核心对象,否则称为边界对象。 2. 如果p是一个核心对象,q属于p的邻域,那么称p直接密度可达q。 3. 如果存在一条链,满足p1=p,pi=q,pi直接密度可达pi+1,则称p密度可达q。 4. 如果存在o,o转载 2013-12-23 21:14:34 · 897 阅读 · 0 评论 -
特征匹配
转载出处:http://blog.sina.com.cn/s/blog_5c6f79380101a0j9.html 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确转载 2014-03-20 21:28:46 · 2123 阅读 · 0 评论