celery分布式

Celery的分布式实际包含两个层次:

  1. Distribute work on a given machine across all CPUs
  2. Distribute work to many machines

先说第一点,默认情况下,Celery在一台机器上启动worker,worker的进程数量和机器的CPU个数一致。比如你的机器只有一个CPU,例如,同时启动5个worker进程,其中concurrency参数控制启动worker的进程数量:

celery -A tasks worker --loglevel=INFO --concurrency=5

注意:在某些IO密集型的任务中,可以考虑启动worker的数量多于CPU数量,在CPU密集型的任务中,这样的操作可能没有什么好处。

再说第二点,因为Celery只指定了worker的broker,所以只需要在不同机器上启动worker,它们都会从相同的broker中获取任务并处理。

在考虑不同机器上的操作时,涉及远程控制的概念,分别如下:
当观察所有运行worker的信息,例如观察当前处于活跃状态的worker和task:

celery -A tasks inspect active

当需要控制worker的行为,例如向worker中增加对某队列的消费:

celery control -d w1.e.com add_consumer queue_name

当需要观察当前worker状态:

celery -A tasks status
### Celery 分布式部署教程 #### 选择合适的Broker和Backend服务 为了实现高效的分布式任务调度,在Celery环境中选用高性能的消息队列中间件(如RabbitMQ或Redis作为broker),以及持久化存储结果的服务端(如数据库或另一种形式的Redis实例作为backend)至关重要[^1]。 #### 配置多个Worker节点 通过增加更多的worker来扩展系统的处理能力。每个worker可以运行在一个独立服务器上,它们共同连接到同一个消息代理(broker),从而形成一个分布式的架构体系。确保各个工作进程能够均匀地接收到来自生产者发布的异步请求并执行相应的函数调用逻辑。 ```bash celery -A your_project worker --loglevel=info --concurrency=8 -n worker1@%h ``` 上述命令用于启动名为`your_project`的应用程序下的一个具有八个并发线程的工作单元;其中`-n`参数指定了该worker的名字以便于管理和监控其状态变化情况。 #### 调整任务路由规则 定义特定的任务应该被发送给哪一类workers去完成。这可以通过设置task_routes选项来自定义匹配模式或者基于类别的映射关系,使得不同类型的作业能够在指定资源池内得到更有效的分发与管理。 ```python app.conf.update( task_routes={ 'tasks.add': {'queue': 'hipri'}, }, ) ``` 此段Python代码展示了如何将名称为`add`的方法定向至优先级较高的队列中等待被执行。 #### 实施高可用性和容错机制 考虑到网络波动可能导致部分组件暂时失效的情况发生,建议采用集群方案提高整体稳定性。比如利用Zookeeper/Kubernetes等工具协调各成员之间的协作行为,同时配合心跳检测功能及时发现离线个体进而采取补偿措施恢复正常的运作流程。 #### 设置合理的超时时间和重试策略 针对可能出现长时间未响应的现象设定最大允许等待时限,并且当遇到失败情形下自动尝试重新提交直至成功为止。这样既保障了业务连续性又不会因为单次异常而影响全局性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值