导弹发射
时间限制:1000 ms | 内存限制:65535 KB
难度:4
描述
Alpha 机构研发出一种新型智能导弹,它能够在雷达检测到的区域内,选择一条前进的路径, 击破路径上所有的目标物。 雷达位于(0,0)处,它能够检测到两条射线之间的区域(不妨设在第一象限)。 导弹一开始置放在(0,0)处,它可以在雷达能检测到的区域内先选择一个目标物击破,然后 再继续前进,选择另一个目标物击破。注意,导弹不能沿着这两条射线前进,当然也不能停在原 地。 可以假设,导弹一旦发射,其能量无比大,前进的路径无限长。 已知雷达能够检测到区域,其射线 1:ax-by=0 和射线 2:cx-dy=0。Alpha 机构的总指挥希望 在发现目标群的第一时刻,计算出一条可以击破最多目标物的路径。
输入
第一行: T 表示以下有 T 组测试数据(1≤T ≤8)
对每组测试数据:
第 1 行: n 表示目标物的个数
第 2 行: a b c d 代表两条射线的斜率分别是 a/b 和 c/d。
接下来有 n 行,每行 2 个正整数 xi yi 即第 i 个目标物的坐标。
【约束条件】
(1) n<=10^5 0<=a, b, c, d<=10^5 a 和 b 不会同时为 0,c 和 d 不会同时为 0;
(2) 0<= xi , yi <=10^6 i=1,…..,n
输出
每组测试数据,输出占一行,即导弹能击破的最多目标数。
样例输入
1
15
1 3 2 1
3 1
6 2
4 2
2 5
4 5
6 6
3 4
1 6
2 1
7 4
9 3
5 3
1 3
15 5
12 4
样例输出
4
思路:
寻找射线内不与两条射线平行的LIS,首先输入的时候计算斜率,判断每个点是否在射线内,然后就是排除与射线平行的线段,这里我采用的方法是,将横坐标减去该点在上射线投影点的x值,纵坐标减去该点在下射线投影点的y值,这样就把平行与两个射线的点转换为与x轴,y轴平行的了,如图2,将坐标转换完毕后就是平面上的LIS问题了,不过要注意的是只能使用NlongN的方法写,不然会超时。
代码:
#include <bits/stdc++.h>
#define N 100005
using namespace std;
struct node{
double x,y;
}no[N];
bool sort_cmp(node a,node b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
int Search(node b[],node num,int low,int high)
{
int mid;
while(low<=high)
{
mid=(low+high)/2;
if(num.y>b[mid].y) low=mid+1;
else high=mid-1;
}
return low;
}
int lis(node a[],int n)
{
int k=1;
node vis[N];
vis[0]=a[0];
for(int i=1; i<n; i++)
{
if(a[i].y>vis[k-1].y&&a[i].x>vis[k-1].x)
vis[k++]=a[i];
else
{
int mid=Search(vis,a[i],0,k);
vis[mid]=a[i];
}
}
return k;
}
int main()
{
int T;cin>>T;
while(T--)
{
double k1,k2;
int l[N];
int a,b,c,d,n,p=0;
scanf("%d",&n);
scanf("%d %d %d %d",&a,&b,&c,&d);
k1=a*1.0/b;k2=c*1.0/d;
if(k1>k2)swap(k1,k2);
for(int i=0;i<n;i++)
{
double ans;
scanf("%d%d",&a,&b);
ans=b*1.0/a;
if(ans>k1&&ans<k2)
{
no[p].x=a*1.0-b*1.0/k2;
no[p].y=b*1.0-k1*a;
l[p]=1;
p++;
}
}
sort(no,no+p,sort_cmp);
cout<<lis(no,p)<<endl;
}
return 0;
}