NYOJ-导弹发射-河南省第九届省赛D题【LIS】

4 篇文章 0 订阅

导弹发射

时间限制:1000 ms | 内存限制:65535 KB
难度:4

描述

Alpha 机构研发出一种新型智能导弹,它能够在雷达检测到的区域内,选择一条前进的路径, 击破路径上所有的目标物。 雷达位于(0,0)处,它能够检测到两条射线之间的区域(不妨设在第一象限)。 导弹一开始置放在(0,0)处,它可以在雷达能检测到的区域内先选择一个目标物击破,然后 再继续前进,选择另一个目标物击破。注意,导弹不能沿着这两条射线前进,当然也不能停在原 地。 可以假设,导弹一旦发射,其能量无比大,前进的路径无限长。 已知雷达能够检测到区域,其射线 1:ax-by=0 和射线 2:cx-dy=0。Alpha 机构的总指挥希望 在发现目标群的第一时刻,计算出一条可以击破最多目标物的路径。
转换前图

输入

第一行: T 表示以下有 T 组测试数据(1≤T ≤8)
对每组测试数据:
第 1 行: n 表示目标物的个数
第 2 行: a b c d 代表两条射线的斜率分别是 a/b 和 c/d。
接下来有 n 行,每行 2 个正整数 xi yi 即第 i 个目标物的坐标。
【约束条件】
(1) n<=10^5 0<=a, b, c, d<=10^5 a 和 b 不会同时为 0,c 和 d 不会同时为 0;
(2) 0<= xi , yi <=10^6 i=1,…..,n

输出

每组测试数据,输出占一行,即导弹能击破的最多目标数。

样例输入

1
15
1 3 2 1
3 1
6 2
4 2
2 5
4 5
6 6
3 4
1 6
2 1
7 4
9 3
5 3
1 3
15 5
12 4

样例输出

4

思路:

寻找射线内不与两条射线平行的LIS,首先输入的时候计算斜率,判断每个点是否在射线内,然后就是排除与射线平行的线段,这里我采用的方法是,将横坐标减去该点在上射线投影点的x值,纵坐标减去该点在下射线投影点的y值,这样就把平行与两个射线的点转换为与x轴,y轴平行的了,如图2,将坐标转换完毕后就是平面上的LIS问题了,不过要注意的是只能使用NlongN的方法写,不然会超时。
转换后图

代码:

#include <bits/stdc++.h>
#define N 100005
using namespace std;
struct node{
    double x,y;
}no[N];
bool sort_cmp(node a,node b)
{
    if(a.x==b.x)
        return a.y<b.y;
    return a.x<b.x;
}
int Search(node b[],node num,int low,int high)
{
    int mid;
    while(low<=high)
    {
        mid=(low+high)/2;
        if(num.y>b[mid].y) low=mid+1;
        else    high=mid-1;
    }
    return low;
}
int lis(node a[],int n)
{
    int k=1;
    node vis[N];
    vis[0]=a[0];
    for(int i=1; i<n; i++)
    {
        if(a[i].y>vis[k-1].y&&a[i].x>vis[k-1].x)
                vis[k++]=a[i];
        else
        {
            int mid=Search(vis,a[i],0,k);
            vis[mid]=a[i];
        }
    }
    return k;
}
int main()
{
    int T;cin>>T;
    while(T--)
    {
        double k1,k2;
        int l[N];
        int a,b,c,d,n,p=0;
        scanf("%d",&n);
        scanf("%d %d %d %d",&a,&b,&c,&d);
        k1=a*1.0/b;k2=c*1.0/d;
        if(k1>k2)swap(k1,k2);
        for(int i=0;i<n;i++)
        {
            double ans;
            scanf("%d%d",&a,&b);
            ans=b*1.0/a;
            if(ans>k1&&ans<k2)
            {
                no[p].x=a*1.0-b*1.0/k2;
                no[p].y=b*1.0-k1*a;
                l[p]=1;
                p++;
            }
        }
        sort(no,no+p,sort_cmp);
        cout<<lis(no,p)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值