快速开平方根算法

人们很早就在Quake3源代码中发现了类似如下的C代码,它可以快速的求1/sqrt(x),在3D图形向量计算方面应用很广
float invSqrt(float x)
{
float xhalf = 0.5 * x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f3759df - (i >> 1); // gives initial guess
x = *(float*)&i; // convert bits back to float
x = x * (1.5 - xhalf * x * x); // Newton step
return x;
}
在分析这段代码之前,先看看传统方法是怎么求一个数的平方根的倒数的,一般采用牛顿迭代法,为描述方便,假设输入数为a,显然需要满足a>0,sqrt是C语言的求平方根函数,为方便起见,下面用sqrt(x)的形式代替x^(1/2)
求1/sqrt(a),用迭代法,即求方程f(x)=x^(-2)-a在f(x)=0时的解,选择适当的初始值x0,代入迭代式:
x=x-f(x)/ f'(x)
化简此式得:
x=3x/2-ax^3/2
这实际上就是上面函数倒数第二行,从函数注释也可以直接看出,这一步就是牛顿迭代,一般选择一个合适的初始值开始迭代后,迭代次数越多越接近解,换句话说就是精度越高,误差越小,当误差小于可接受值,即可获得近似结果了,就这个问题而言,初始值的选择一般要在区间(0, sqrt(3/a)),证明从略
而invSqrt这个函数厉害的地方就在于,在正式迭代开始前的三行计算已经得到了一个非常接近于解的数,因此只需一次迭代,即可得到近似值,经测试,对于常用的浮点数范围,invSqrt(x)与标准解1/sqrt(x)的最大相对误差为1.75‰,平均相对误差为0.95‰,这个精度在很多时候已经满足QuakeIII的基本要求1‰了,而invSqrt(x)的速度则比直接计算1/sqrt(x)快4倍,这对于Quake和CS这类游戏的性能是非常重要的,而且如果需要更高的精度,则将迭代那一行再重复一次就可以了,相对误差会降到百万分之一的级别,只不过速度会慢一些,接下来我们来分析下这三行代码的原理
最令人迷惑的是gives initial guess这行,即对i做了移位和减法运算,不过熟悉C语言的人应该能看出来,这个算法和float浮点数的内部表示有关,分析应该从这里入手
正式开始前先轻松下,讲些历史故事,人们在QuakeIII源码发现了这个函数,于是很自然的认为这是卡马克(John Carmack)的杰作,其中0x5f3759df这个数被称为卡马克密码,我们在下面称这个数为magic,Beyond3D.com的Ryszard Sommefeldt一直在想到底是哪个家伙写了这些神奇的代码,于是就开始找作者,John Carmack在邮件回复中明确表示不是他,也不是Michael。Terje Mathisen说他写过类似的高效代码,但上面的不是。后来猜测这个来自于一些早期黑客的算法笔记,作者究竟是谁自然也难以追查了,可以肯定的是这个家伙对计算机和高数知识都有较好理解,很聪明
2003年普渡大学的数学家Chris Lomont写了一篇文章对这段代码进行了分析。论文是英文的,地址在:
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值