leetcode----数字

1.题目Count Primes(计算质数个数)

Count the number of prime numbers less than a non-negative number, n.

计算小于n的非负数中质数的个数

思路:对于每一个数k,检查是否能被2到sqrt(k)整除

代码:

class Solution {
public:
    int countPrimes(int n) {
        if(n<=0)
            return 0;
        int num=1;
        for(int i=2;i<n;++i)
        {
            int j=2;
            for(;j<=(int)sqrt(i);++j)
            {
                if(0==i%j)
                    break;
            }
            if(j>(int)sqrt(i))
                ++num;
        }
    }
};

可以改进的地方:时间复杂度太高

改进的方法:

思路:https://zh.wikipedia.org/wiki/埃拉托斯特尼筛法

给出要筛数值的范围n,找出\sqrt{n}以内的素数p_{1},p_{2},\dots,p_{k}。先用2去筛,即把2留下,把2的倍数剔除掉;再用下一个素数,也就是3筛,把3留下,把3的倍数剔除掉;接下去用下一个素数5筛,把5留下,把5的倍数剔除掉;不断重复下去......。

http://blog.csdn.net/angelazy/article/details/45561885

这里还可以进行一个优化,即对于质数 p,排除掉p的整数倍后,剩下的元素中满足  p<k<pp 的元素k均为质数。这里简单证明一下:

  • 每个非质数均可以分解为若干个( >2 ,否则 k 本身为质数)质数的乘积:  k=p1p2pm
  • 对于满足 p<k<pp 的元素来说,如果 k 不为质数,则 k 可以分解为 k=p1p2pm ,其中必然有一个质数满足  pi<p
  • 这里用反证法证明。若 k=p1p2pm 中每一个质数均 pi>p ;则有 k>pp ,超出限定的条件 p<k<pp ,所以该非质数已经在前面的处理过程中排除掉了。

代码:

class Solution {
public:
    int countPrimes(int n) {
        if(n<=2)  
            return 0;  
        int *array = new int[n]();  
        int tmp, sum, count = n-2;  
        for(int i=2; i<=(int) sqrt(n); i++)  
        {  
            if(!array[i])  
            {  
                tmp = i*i;  
                for(int j=0; (sum=tmp+i*j)<n; ++j)  
                {  
                    if(!array[sum])  
                    {  
                        array[sum] = true;  
                        --count;  
                    }  
                }  
            }  
        }  
        delete []array;  
        return count;
    }
};

2. 题目:快乐数字

Write an algorithm to determine if a number is "happy".

A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.

Example: 19 is a happy number

  • 12 + 92 = 82
  • 82 + 22 = 68
  • 62 + 82 = 100
  • 12 + 02 + 02 = 1
思路:

用循环的方式判断各位数字之和是否为1。为避免无限循环,将每次数学的数字存入哈希表中,若再次出现,则跳出循环。

代码:

class Solution {
public:
    bool isHappy(int n) {
        if(n<=0)
            return false;
        set<int> a;
        a.insert(n);
        while(n!=1)
        {
            a.insert(n);
            int sum=0;
            while(n>9)
            {
                sum+=pow((n%10),2);
                n/=10;
            }
            sum+=pow(n,2);
            if(a.find(sum)!=a.end())
                return false;
            n=sum;
        }
        return true;
    }
};

可以改进的地方:时间开销大

改进的方法:

思路:

Using fact all numbers in [2, 6] are not happy (and all not happy numbers end on a cycle that hits this interval)

不知道怎么证明的?

代码:

bool isHappy(int n) {
    while(n>6){
        int next = 0;
        while(n){next+=pow(n%10,2); n/=10;}
        n = next;
    }
    return n==1;
}
后来在维基百科里搜到了https://en.wikipedia.org/wiki/Happy_number

自己写了下代码:

class Solution {
public:
    bool isHappy(int n) {
    while (n!=1 && n!=4) {
        int sum = 0;
        while (n) {
            sum+=pow(n%10,2);
            n /= 10;
        }
        n = sum;
    }
    return n==1;
}
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值