rsa
文章平均质量分 60
重返未来1999里的摆烂人
wu
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[HDCTF 2023]Math_Rsa
本题是一个结合了RSA加密和二次剩余性质的混合加密方案,通过分析给定的加密代码和参数,需要恢复出原始的flag。最后得到flag为HDCTF{0ce04f81-516b-4132-81a2-b0b7166e03ad}得到p后,计算q = n // p。原创 2026-01-09 10:11:45 · 341 阅读 · 0 评论 -
NSSCTF——[SWPUCTF 2021 新生赛]crypto3
无原创 2026-01-09 09:47:43 · 888 阅读 · 0 评论 -
[RoarCTF 2019]RSA
摘要:该文章展示了一个RSA密码破解过程。首先通过遍历x和y的值(2到200)解方程求得x=2,y=83。然后计算n=p*q,其中p是n//166的平方根的下一个素数,q=n//p。使用e=0x10001和已知的密文c进行解密,最终通过遍历可能的e值(从3开始)成功解密得到明文。整个过程结合了数学计算和密码学方法,实现了对RSA加密数据的破解。原创 2025-11-20 19:27:11 · 311 阅读 · 0 评论 -
rsa——威尔逊定理
无原创 2025-11-19 14:38:11 · 921 阅读 · 0 评论 -
NSSCTF3
广播攻击的原理是:假设我们有多个密文c_i,满足c_i = m^e mod n_i,其中i=1到k,且k >= e。如果所有n_i互质,那么我们可以使用CRT找到一个新的数x,满足x ≡ c_i mod n_i。c1=cd(modn2)(其中 d=e−1(modϕ(n2)))c1=cd(modn2)(其中 d=e−1(modϕ(n2)))m=c1d(modn1)(其中 d=e−1(modϕ(n1)))m=c1d(modn1)(其中 d=e−1(modϕ(n1)))确保所有n_i互质。原创 2025-11-03 09:29:22 · 1106 阅读 · 0 评论 -
斐波那契数列
本文系统介绍斐波那契数列及其在CTF密码学中的巧妙应用。文章首先讲解这一经典数列的数学定义与性质,随后重点剖析其在CTF竞赛中的三大实战场景:作为流密码的伪随机密钥流、与RSA等模运算密码的结合、以及基于齐肯多夫定理的编码系统。通过清晰的示例和解题脚本,旨在帮助参赛者快速识别并破解此类蕴含数学模式的密码挑战。原创 2025-10-31 09:56:54 · 1942 阅读 · 0 评论 -
RSA 加密算法攻击类型全面解析
RSA 作为最广泛使用的非对称加密算法,其安全性基于大整数分解的困难性。然而在实际应用中,由于参数选择不当或实现错误,存在多种攻击方法。:如果 gcd(e₁, e₂) = 1,存在 r,s 使得 r·e₁ + s·e₂ = 1。:n = p×q,当 |p-q| 很小时可用 Fermat 分解。:寻找最小的 k 使得 mᵉᵏ ≡ m (mod n):寻找满足 mᵉ ≡ m (mod n) 的明文。:加密指数 e 与 φ(n) 不互质的特殊情况。:e 很小,相同明文发送给多个接收者。原创 2025-10-31 09:34:26 · 961 阅读 · 0 评论 -
NSSCTF2
显而易见,这是一道非常基础的RSA题目。已经给出p,q,c,e。是一种针对 RSA 加密系统的攻击方法,当明文很小而加密指数 ee 也很小时,即使不知道私钥也能恢复明文。解出flag为flag{R54_|5_$0_$imp13}当两个明文有线性关系时,可能通过求解多项式方程恢复明文。推荐使用 e=65537e=65537,平衡安全性和性能。:ee 个不同的密文,且 me<∏nime<∏ni。flag为NSSCTF{happy_rsa_1}既然如此,先假设e为3(小明文中最常用的e)原创 2025-10-30 18:58:18 · 897 阅读 · 0 评论 -
RSA算法数学基础
如果 n=p×qn=p×q,且 pp 和 qq 都是质数,则 φ(n)=φ(p)×φ(q)=(p−1)(q−1)φ(n)=φ(p)×φ(q)=(p−1)(q−1)。:选择一个整数 ee,满足 1<e<φ(n)1<e<φ(n),且 gcd(e,φ(n))=1gcd(e,φ(n))=1(即 ee 与 φ(n)φ(n) 互质)。根据密钥生成过程,我们有 e×d≡1(modφ(n))e×d≡1(modφ(n)),即 e×d=k×φ(n)+1e×d=k×φ(n)+1(对于某个整数 kk)。原创 2025-10-30 10:15:39 · 677 阅读 · 0 评论 -
rsa学前必读2--中国剩余定理(Chinese Remainder Theorem, CRT)
的正整数,即对于任意 i≠ji=j,有 gcd(mi,mj)=1gcd(mi,mj)=1。,x mod mk)f(x)=(xmodm1,xmodm2,…ai≡aj(modgcd(mi,mj))对于所有 i,jai≡aj(modgcd(mi,mj))对于所有 i,j。yiyi 是 MiMi 在模 mimi 下的逆元,即 Miyi≡1(modmi)Miyi≡1(modmi)计算量从 O((logn)3)O((logn)3) 降到 O((logn)2)O((logn)2)。原创 2025-10-28 15:50:03 · 976 阅读 · 0 评论 -
RSA算法原理(基础)
RSA是一种非对称加密算法,基于大数分解难题实现安全通信。其核心步骤包括:选择大质数p、q计算模数n=pq和欧拉函数φ(n);选择与φ(n)互质的公钥e,计算私钥d作为e的模逆元。加密时用公钥(e,n)计算c=m^e mod n,解密时用私钥(d,n)还原m=c^d mod n。算法安全性依赖于n难以分解,建议使用2048位以上密钥。RSA广泛应用于数字签名、密钥交换和数据加密领域。原创 2025-10-28 12:30:00 · 1695 阅读 · 0 评论 -
rsa学前必读--欧拉函数
如果两个正整数 m 和 n 互质,即 GCD(m, n) = 1,那么 φ(m * n) = φ(m) * φ(n)。此时,φ(n) = φ(p) * φ(q) = (p-1)(q-1)。代入公式:φ(36) = 36 × (1 - 1/2) × (1 - 1/3) = 36 × (1/2) × (2/3) = 36 × (1/3) = 12。我们可以验证:与36互质的数有1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35,正好是12个。原创 2025-10-27 18:24:20 · 887 阅读 · 0 评论 -
1,RSSSSSA
是一种针对RSA加密的攻击方法,适用于加密指数e较小的场景。其核心思想是利用中国剩余定理(CRT)和模数n的特性,通过多个密文和模数的组合来恢复明文。我们可以看到它给了我们多个n和多个c并且e特别小,这明显是低加密指数广播攻击。使用中国剩余定理将这些密文和模数组合成一个方程组,计算出一个统一的结果。明文m使用不同的模数n加密,但加密指数e相同。下加密后,通过CRT可以“拼凑”出完整的。攻击者能够获取所有密文c和对应的模数n。对结果进行e次方根运算,得到明文m。收集多个密文c和对应的模数n。原创 2025-10-27 11:01:50 · 359 阅读 · 0 评论 -
做题记录22——baigeiRSA
题目为白给的rsa,但不能掉以轻心我已经数不清做过多少不easy的easyrsa,不baby的babyrsa了。坏了,这题貌似真的是白给的,but 就算n这么小也不代表它一定可以分解!flag为HSCTF{@Zh3n_Ba1_G3i!(这篇属于是梦到啥就写啥了【笑哭】)接下来就是最基础的rsa了。.......分解成功了。同志们好,继续做题0w0。原创 2025-10-22 18:30:25 · 233 阅读 · 0 评论 -
做题记录21——[简单] 初识RSA
该题目是一道RSA加密题,给出了加密参数c、n、pq和qp。通过分析可知,pq=p*(q-1),qp=q*(p-1),结合欧拉函数公式φ(n)=(p-1)(q-1),可以推导出φ(n)=pq*qp//n。利用已知参数计算私钥d,最后解密得到flag。原创 2025-10-22 14:59:59 · 339 阅读 · 0 评论 -
做题记录17-[SWPUCTF 2021 新生赛]crypto4
摘要:通过分解RSA算法的n值成功获取p和q,进而计算出私钥d,解密得到flag。解题过程包括:1) 分解n=p*q;2) 计算欧拉函数φ(n);3) 求模逆元d;4) 解密c得到明文m。最终flag为"NSSCTF{no_why}"。该题展示了RSA加密的脆弱性——当p和q相近时,n容易被分解。原创 2025-10-21 19:36:16 · 166 阅读 · 0 评论 -
做题记录12——ctfshow—funnyrsa3
本文介绍了利用RSA中的dp参数进行CTF题解的实例。题目给出了n、e、c和dp参数,作者通过分解n获得p和q,进而计算出私钥d。使用常规RSA解密公式,最终解出flag为"flag{dp_i5_1eak}"。整个过程展示了如何利用已知参数绕过缺少dq的限制,并强调了dp在加速RSA解密中的作用。解决步骤包括分解n、计算phi和d,最终通过模幂运算得到明文。原创 2025-10-19 18:54:51 · 408 阅读 · 0 评论 -
做题记录11
该文章摘要展示了如何利用共享素因子的RSA模数进行破解。当两个RSA公钥对(n1,c1)和(n2,c2)使用相同指数e=65537时,通过计算n1和n2的最大公约数(gcd)得到素因子p,进而求出私钥d。使用中国剩余定理解密密文c1,最终还原出明文。文章包含具体的Python实现代码,演示了从获取公钥参数到最终解密的完整过程,揭示了RSA实现中共享素因子的安全风险。原创 2025-10-16 20:09:18 · 417 阅读 · 0 评论 -
做题记录9
这是一篇关于CTF中RSA基础题目的解题教程。文章首先介绍了RSA算法的基本原理,包括密钥生成的五个步骤:选择质数p和q、计算模数n、欧拉函数φ(n)、选择公钥指数e、计算私钥指数d。然后针对题目给出的参数(e,p,q,c),展示了具体的Python解题脚本:导入必要库后计算φ(n)和私钥d,最后用pow(c,d,n)解密获得明文消息,并通过long_to_bytes转换输出。整个过程简洁明了地演示了RSA解密的基本流程。原创 2025-10-16 19:47:52 · 982 阅读 · 0 评论 -
做题记录8
这篇writeup展示了一个简单的RSA加密破解过程。作者从给定的e、n、c参数入手,首先尝试分解n并成功得到p和q。然后计算φ(n)和私钥d,最终解密出明文,发现flag为"flag{very_biiiiig_e}"。整个过程表明,虽然e值很大,但这并不影响破解,题目设计的意图似乎只是为了让flag包含"biiiiig_e"这个提示。原创 2025-10-16 18:42:39 · 444 阅读 · 0 评论 -
做题记录7
本文演示了RSA私钥d的计算过程。已知素数p=473398607161、q=4511491和公钥指数e=17,首先计算欧拉函数φ(n)=(p-1)(q-1),然后使用gmpy2库的invert函数求e关于φ(n)的模逆元,最终得到私钥d。该代码简洁地实现了RSA密钥生成的关键步骤,展示了如何从已知参数推导出解密指数d。原创 2025-10-15 20:11:36 · 210 阅读 · 0 评论 -
buu做题记录
摘要:这是一道基础的RSA加密题目,给出了16进制格式的p、q、e、c参数值。解题过程包括将参数转换为10进制,计算n和φ(n),求私钥d,最后解密密文c得到flag{R54_|5_$0_$imp13}。代码使用gmpy2库进行模逆运算,通过标准RSA解密流程成功获取明文。原创 2025-10-14 18:19:15 · 369 阅读 · 1 评论
分享