一.实验目的
掌握DPCM编解码系统的基本原理。初步掌握实验用C/C++/Python等语言编程实现DPCM编码器,并分析其压缩效率。
二.实验原理
1.DPCM是差分预测编码调制的缩写,是比较典型的预测编码系统。在DPCM系统中,需要注意的是预测器的输入是已经解码以后的样本。之所以不用原始样本来做预测,是因为在解码端无法得到原始样本,只能得到存在误差的样本。因此,在DPCM编码器中实际内嵌了一个解码器,如编码器中虚线框中所示。在一个DPCM系统中,有两个因素需要设计:预测器和量化器。理想情况下,预测器和量化器应进行联合优化。实际中,采用一种次优的设计方法:分别进行线性预测器和量化器的优化设计。
2.原理图
三.实验步骤
1.输入一个256*256的图像,在DPCM编码器实现的过程中可输出预测误差图像和重建图像。
2.将预测误差图像写入文件并将该文件输入Huffman编码器,得到输出码流、给出概率分布图并计算压缩比。
3.将原始图像文件输入Huffman编码器,得到输出码流、给出概率分布图并计算压缩比。
4.比较两种系统(DPCM+熵编码和仅进行熵编码)之间的编码效率(压缩比和图像质量)。压缩质量以PSNR进行计算。
部分代码:
(1)DPCM.h
void DPCMLeft(int Width,int Height,void *yBuff,void *recBuff,void *errBuff);
int simplest_yuv420_psnr(void *yBuff1,void *yBuff2, int w, int h, int num);
(2)DPCM.cpp
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include <string.h>
#include"DPCM.h"
//向左预测//
void DPCMLeft(int Width,int Height,void *yBuff,void *recBuff,void *errBuff)//DPCM向左预测
{
unsigned char *yB=NULL;
yB = (unsigned char *)yBuff;
unsigned char *recB=NULL;
recB = (unsigned char *)recBuff;
unsigned char *errB=NULL;
errB = (unsigned char *)errBuff;
int P1,P2;//P1为当前值与预测值的误差,P2为量化后的误差
unsigned char P3;//P3为反量化后的误差
for(int i=0;i<Height;i++)
{
for(int j=0;j<Width;j++)
{
if(j == 0)//向左进行预测时,图像最左边一列的像素值直接输出,无需进行差分预测
{
*(recB+j+i*Width)=*(yB+j+i*Width);//当前值即为重建值,作为下一个像素的参考值
*(errB+j+i*Width)=0;//误差为0
}
else//当不是最左边一列的像素时,进行DPCM
{
P1=*(yB+j+i*Width)-*(recB+(j-1)+i*Width);//求当前值与参考值的差值
if(P1%2==0)//对差值进行8bit均匀量化,并进行+128的偏移以输出
P2=P1/2+128;
else
P2=(P1-1)/2+128;
*(errB+j+i*Width)=unsigned char(P2);//将误差写入errB缓存区域
P3=unsigned char(P2*2);//对量化后的误差反量化
*(recB+j+i*Width)=*(recB+(j-1)+i*Width)+P3;
//将参考值与反量化得到的误差相加,作为当前像素的重建值,即下一个像素的参考值
}
}
}
}
//PSNR//
int simplest_yuv420_psnr(void *yBuff1,void *yBuff2, int w, int h, int num)//计算Y分量的PSNR
{
unsigned char *yB1=NULL;
yB1 = (unsigned char *)yBuff1;
unsigned char *yB2=NULL;
yB2 = (unsigned char *)yBuff2;
for (int i = 0; i < num; i++)
{
double mse_sum = 0, mse = 0, psnr = 0;
for (int j = 0; j < h ; j++)
{
for (int k = 0; k < w; k++)
{
mse_sum += pow((double)(*(yB1+k+j*w) - *(yB2+k+j*w)), 2);//取每个差值的平方,并进行累加
}
}
mse = mse_sum / (w * h); //根据公式计算mse
psnr = 10 * log10(255.0 * 255.0 / mse); //根据公式计算psnr
printf("%5.3f\n", psnr);
}
system("pause");
return 0;
}
四.实验结果
通过图像像素概率分布图我们可以明显看出残差图的像素值集中分布在一个小像素值区间中,这对霍夫曼编码压缩是极为有利的。