腾讯2017暑期实习生编程题

本文介绍了四种不同的方法来处理字符串问题:将所有的小写字母移到前面,同时保持字符的相对位置不变,以及找出并删除最少数量的字符以形成最长的回文串。通过实际代码示例,展示了如何使用C++实现这些解决方案。
小Q最近遇到了一个难题:把一个字符串的大写字母放到字符串的后面,各个字符的相对位置不变,且不能申请额外的空间。
你能帮帮小Q吗?



输入描述:

输入数据有多组,每组包含一个字符串s,且保证:1<=s.length<=1000.



输出描述:

对于每组数据,输出移位后的字符串。


输入例子:
AkleBiCeilD

输出例子:

kleieilABCD

解法1:

#include <iostream>
#include <string>
using namespace std;

int main(){
    string s;
    while(cin >> s){
        for(int i = 0; i < s.length(); ++i)
            if(s[i] >= 'a' && s[i] <= 'z')
                cout << s[i];
        for(int i = 0; i < s.length(); ++i)
            if(s[i] >= 'A' && s[i] <= 'Z')
                cout << s[i];
        cout << endl;
    }
    return 0;
}

解法2:

#include <iostream>
#include <string>
#include <algorithm>
using namespace std;

bool isLower(char c){
    return c >= 'a';
}

int main(){
    string s;
    while(cin >> s){
        stable_partition(s.begin(), s.end(), isLower);
    	cout << s << endl;
    }
    return 0;
}

解法3:

#include <iostream>
#include <string>
using namespace std;

bool isCap(char c){
    if(c >= 'A' && c <= 'Z')
        return true;
    return false;
}

int main(){
    string s;
    while(cin >> s){
        int len = s.length();
        int end = len;
        for(int i = 0; i < end; ++i){
            if(isCap(s[i])){
                int j = i;
                for(; j < len - 1; ++j)
                    swap(s[j], s[j+1]);
                --end;
                --i;
            }
        }
        cout << s << endl;
    }
    return 0;
}


解法4:

#include<iostream> 
#include<string>
using namespace std;

int main(){
    string s; 
    while(cin >> s){
        for(int i = 0; i < s.size()-1; i++) 
            for(int j = 0; j < s.size()-1-i; j++) 
                if((s[j] >= 'A' && s[j] <= 'Z')&&(s[j+1] < 'A' || s[j+1] > 'Z')){ 
                    char c = s[j]; 
                    s[j] = s[j+1]; 
                    s[j+1] = c;
                } 
     cout << s << endl; 
    } 
}


给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串。如何删除才能使得回文串最长呢?
输出需要删除的字符个数。

输入描述:

输入数据有多组,每组包含一个字符串s,且保证:1<=s.length<=1000.



输出描述:

对于每组数据,输出一个整数,代表最少需要删除的字符个数。


输入例子:
abcda
google

输出例子:
2
2
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;

const int MAX = 1001;
int MaxLen[MAX][MAX];

int maxLen(string s1, string s2){
    int length1 = s1.length();
    int length2 = s2.length();
    for(int i = 0; i < length1; ++i)
        MaxLen[i][0] = 0;
    for(int i = 0; i < length2; ++i)
        MaxLen[0][i] = 0;
    
    for(int i = 1; i <= length1; ++i){
        for(int j = 1; j <= length2; ++j){
            if(s1[i-1] == s2[j-1]){
                MaxLen[i][j] = MaxLen[i-1][j-1] + 1;
            } else{
                MaxLen[i][j] = max(MaxLen[i-1][j], MaxLen[i][j-1]);
            }
        }
    }
    return MaxLen[length1][length2];
}

int main(){
    string s;
    while(cin >> s){
        string s2 = s;
        reverse(s2.begin(), s2.end());
        int max_length = maxLen(s, s2);
        cout << s.length() - max_length << endl;
    }
    return 0;
}


#include <iostream>
#include <string>
#include <algorithm>
using namespace std;

const int MAX = 1001;
int max_len[MAX][MAX];

int main(){
    string s1;
    while(cin >> s1){
        string s2(s1.rbegin(), s1.rend());
        for(int i = 0; i < s1.length(); ++i){
            max_len[i][0] = 0;
            max_len[0][i] = 0;
        }
        for(int i = 1; i <= s1.length(); ++i){
            for(int j = 1; j <= s1.length(); ++j){
            	if(s1[i-1] == s2[j-1]){
                    max_len[i][j] = max_len[i-1][j-1] + 1;
                } else {
                    max_len[i][j] = max(max_len[i][j-1], max_len[i-1][j]);
                }
            }
        }
        cout << s1.length() - max_len[s1.length()][s1.length()] << endl;
    }
    return 0;
}

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值