[HNOI2008]越狱

1008: [HNOI2008]越狱

Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 10743 Solved: 4682
[Submit][Status][Discuss]

Description

  监狱有连续编号为1…N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

Input

  输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

Output

  可能越狱的状态数,模100003取余

Sample Input

2 3

Sample Output

6

HINT

  6种状态为(000)(001)(011)(100)(110)(111)




读完题目,马上有两种思路,第一种是直接求出个数,第二种是求出总个数再减去不可行的个数。
对于第一种思路,我们会发现,想要表示出来会比较复杂(我自己是整了半天都没整明白)。
相比之下第二种就简单多了。
总组合数为 M^N,其中有 M*(M-1)^(N-1) 个是不满足的个数。

这里写图片描述

如图,第一个人可以有 M 种可能,第二个人为了和第一个人不一样,那么就只有 M-1 种选择了,第三个人又要和第二个人不一样,所以也只有 M-1 种可能,后面以此类推。
最后还是特殊情况,由于我们在求解过程中会对100003取模,所以,作差可能会是负数,需要+100003补回来。
(a - b) % t = ((a % t)-(b % t) + t) % t
a = k1 * t + r1 ; b = k2 * t + r2
(a - b) % t = (k1*t + r1 - k2*t - r2) % t
(a - b) % t = ((k1-k2)*t + r1-r2) % t
设 x*t ≥ |r1 - r2|
(a - b) % t = ((k1-k2-x)*t + (r1-r2 + x*t)) % t
(a - b) % t = (k1-k2-x)*t%t + (r1-r2 + x*t)%t
∵ -t<r1-r2<t
∴ (a - b) % t = ((a % t)-(b % t) + t) % t

这次自己码了一段。

#include<cstdio>
#include<algorithm>
#define tt 100003
#define LL long long
using namespace std;
LL read()
{
    LL ret=0;
    char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch>='-'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
    return ret;
}
int main()
{
    LL n,m,x,y,s1,s2;
    m=read(),n=read()-1;
    if (n==1) {printf("0");return 0;}
    if (m==1) {printf("1");return 0;}
    s1=s2=x=m%tt;
    y=(m-1)%tt;
    while (n)//快速幂,s1是M^N,s2是M*(M-1)^(N-1)
    {
        if (n&1) s1=s1*x%tt,s2=s2*y%tt;
        x=x*x%tt;y=y*y%tt;n>>=1;
    }
    m=s1-s2;
    if (m<0) m+=tt;
    printf("%lld",m);
    return 0;
}
根据引用\[1\]和引用\[2\]的描述,题目中的影魔拥有n个灵魂,每个灵魂有一个战斗力ki。对于任意一对灵魂对i,j (i<j),如果不存在ks (i<s<j)大于ki或者kj,则会为影魔提供p1的攻击力。另一种情况是,如果存在一个位置k,满足ki<c<kj或者kj<c<ki,则会为影魔提供p2的攻击力。其他情况下的灵魂对不会为影魔提供攻击力。 根据引用\[3\]的描述,我们可以从左到右进行枚举。对于情况1,当扫到r\[i\]时,更新l\[i\]的贡献。对于情况2.1,当扫到l\[i\]时,更新区间\[i+1,r\[i\]-1\]的贡献。对于情况2.2,当扫到r\[i\]时,更新区间\[l\[i\]+1,i-1\]的贡献。 因此,对于给定的区间\[l,r\],我们可以根据上述方法计算出区间内所有下标二元组i,j (l<=i<j<=r)的贡献之和。 #### 引用[.reference_title] - *1* *3* [P3722 [AH2017/HNOI2017]影魔(树状数组)](https://blog.csdn.net/li_wen_zhuo/article/details/115446022)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [洛谷3722 AH2017/HNOI2017 影魔 线段树 单调栈](https://blog.csdn.net/forever_shi/article/details/119649910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值