P3195 [HNOI2008]玩具装箱TOY
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入样例
5 4
3
4
2
1
4
输出样例
1
题解
斜率优化(实在不想再推了,这么简单东西居然推了一个晚上 [捂脸])
关于这种优化,有一篇写得挺好的博客。(适合我这样的数学较弱的同学)
传送门
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL double
#define g(x) (f[x]+sq(b[x]))
using namespace std;
const int maxn=50005;
int n,L,q[maxn],til,hea;
LL f[maxn],a[maxn],b[maxn],s[maxn];
LL sq(LL x){return x*x;}
LL F(int i,int j){return (g(i)-g(j))/(b[i]-b[j]);}
int main()
{
scanf("%d%d",&n,&L);
b[0]=L+1;
for (int i=1,x;i<=n;i++)
{
scanf("%d",&x);
s[i]=s[i-1]+x;
a[i]=s[i]+i;
b[i]=a[i]+L+1;
}
for (int i=1;i<=n;i++)
{
while (hea<til&&F(q[hea],q[hea+1])<=a[i]*2) hea++;
f[i]=f[q[hea]]+sq(a[i]-b[q[hea]]);
while (hea<til&&F(i,q[til])<F(q[til-1],q[til])) til--;
q[++til]=i;
}
printf("%.0lf\n",f[n]);
return 0;
}