#10164. 「一本通 5.3 例 2」数字游戏
题目链接
题解
完全自主写下的数位DP(虽然巨水无比)
和windy树一样。
我们很难求什么范围内的,但是我们可以求每个长度且高位确定情况下的方案数,由此我们可以进而求出完全小于 x 的方案数,然后容斥求解。
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=20;
#define LL long long
LL f[maxn][maxn];
int a,b,p[maxn],n;
LL get_(int x)
{
n=0;LL sum=0;
for (int y=x;y;y/=10) p[++n]=y%10;
for (int i=1;i<n;++i)
for (int j=1;j<10;++j) sum+=f[i][j];//长度小于x的
for (int j=1;j<p[n];++j) sum+=f[n][j];//长度相等,高位小于x的
for (int i=n,mi=0;i>=1;--i)//枚举相等的位,求长度相等,若干高位相等且小于x的
{
if (p[i-1]<p[i]) break;mi=max(mi,p[i]);
for (int j=mi;j<p[i-1];++j) sum+=f[i-1][j];
}
return sum;
}
int main()
{
// freopen("at.in","r",stdin);freopen("at.out","w",stdout);
for (int i=0;i<=9;++i) f[1][i]=1;
for (int i=2;i<=12;++i)
for (int j=1;j<10;++j)
for (int k=j;k<10;++k) f[i][j]+=f[i-1][k];
while (~scanf("%d%d",&a,&b)) printf("%lld\n",get_(b+1)-get_(a));
return 0;
}