Loj#10164. 「一本通 5.3 例 2」数字游戏

21 篇文章 0 订阅
4 篇文章 0 订阅

#10164. 「一本通 5.3 例 2」数字游戏
题目链接
在这里插入图片描述

题解
完全自主写下的数位DP(虽然巨水无比)

和windy树一样。
我们很难求什么范围内的,但是我们可以求每个长度且高位确定情况下的方案数,由此我们可以进而求出完全小于 x 的方案数,然后容斥求解。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=20;
#define LL long long
LL f[maxn][maxn];
int a,b,p[maxn],n;
LL get_(int x)
{
	n=0;LL sum=0;
	for (int y=x;y;y/=10) p[++n]=y%10;
	for (int i=1;i<n;++i)
	 for (int j=1;j<10;++j) sum+=f[i][j];//长度小于x的
	for (int j=1;j<p[n];++j) sum+=f[n][j];//长度相等,高位小于x的
	for (int i=n,mi=0;i>=1;--i)//枚举相等的位,求长度相等,若干高位相等且小于x的
	{
		if (p[i-1]<p[i]) break;mi=max(mi,p[i]);
		for (int j=mi;j<p[i-1];++j) sum+=f[i-1][j];
	}
	return sum;
}
int main()
{
//	freopen("at.in","r",stdin);freopen("at.out","w",stdout);
	for (int i=0;i<=9;++i) f[1][i]=1;
	for (int i=2;i<=12;++i)
	 for (int j=1;j<10;++j)
	  for (int k=j;k<10;++k) f[i][j]+=f[i-1][k];
	while (~scanf("%d%d",&a,&b)) printf("%lld\n",get_(b+1)-get_(a));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值